Fusion or non-fusion of quasi-two-dimensional fused perylene

diimide acceptors: the importance of molecular geometry for

fullerene-free organic solar cells

Yuli Yin,‡^a Zhi Zheng,‡^a Daoyuan Chen,^a Ming Liu,^a Jianqi Zhang,^b Fengyun Guo,^a Shiyong

Gao,^a Liancheng Zhao,^a Yong Zhang^{a,c*}

^a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001,

China

^b Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience

and Technology, Beijing 100190, China

^c School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

*Corresponding authors (email: yongzhang@hit.edu.cn)

‡ Both authors contributed equally to this work.

EXPERIMENTAL SECTION Characterization

¹H NMR spectra were recorded on a Bruker AV600 NMR spectrometer and used tetramethylsilane (TMS) as an internal standard in CDCl₃. The UV-Vis spectra of polymers were measured on with a TU-1601 spectrophotometer by using a 1 cm glass cuvette. The solution UV-Vis absorption spectra at elevated temperature were collected with a Perkin Elmer Lambda 950 UV/VIS/NIR Spectrophotometer (USA). Cyclic voltammetry (CV) was performed in 0.1M tetrabutylammonium hexafluorophosphate in acetonitrile at a scan rate of 100 mV/s with ITO as the working electrode, Pt wire as the counter electrode and Ag/Ag⁺ as the reference electrode. Atomic force microscopy (AFM) images were obtained using a NanoMan VS microscope in the tapping mode. Transmission electron microscopy (TEM) measurements were performed on a Hitachi H-7650 instrument (Hitachi Company, Japan). GIWAXS measurements were conducted at XEUSS SAXS/WAXS system with X-ray wavelength of 1.5418 Å. The film samples were irradiated at a fixed angle of 0.2° for 12 hours.

Device Fabrication. Prepatterned ITO-coated glasses were cleaned by sequential cycles of sonication in soap water, deionized water, ethanol, acetone, and isopropanol for 30 min, respectively. After UV/ozone treatment for 6 min, PEDOT:PSS hole transport layer was filtered and spin-coated on top of the treated-ITO at 4000 rpm for 25 s and dried over 160 °C for 20 min. The active layer solutions were prepared in CB (with a polymer concentration of 8 mg/mL and a D/A ratio at 1:1.5), and spin-coated on the PEDOT:PSS-coated substrates in a glove-box under N₂ atmosphere at 1500 rpm for 45 s to obtain a thickness of \approx 120 nm. The blend films were then transferred to the

heating platform and annealed at 100 °C for 10 min. A thin layer of PFN-Br (1 mg/mL) was spin coated on the top of active layer with 4000 rpm for 30 s. Finally, the Ag (100 nm) electrode was evaporated onto the active layer under a vacuum of 10⁻⁵ Torr. The current-voltage characteristics of the devices were measured using a computer-controlled Keithley 2400 source meter under stimulated AM1.5 G at an intensity of 100 mW/cm² provided by a solar simulator. The EQEs were measured by an Oriel Newport System. All above measurements were done at room temperature.

The hole-only device for the hole mobility was fabricated with a device structure of ITO/PEDOT:PSS/PTB7-Th:SMAs/Au. The electron-only device for the electron mobility was fabricated with a device structure of ITO/ZnO/PTB7-Th: SMAs /PFN-Br/AI. Both the hole and electron mobilities by space charge limited current (SCLC) were calculated with the following Mott-Gurney equation in the SCLC region: $J = (9/8)\varepsilon_0\varepsilon_r\mu(V^2/L^3)$, in which ε_0 is the permittivity of the vacuum, ε_r is the dielectric constant of the polymer and assumed to be 3, and *L* is the thickness of active layer.

Fig. S1. The previous work on PDI-based fullerene-free electron acceptors via control of the molecular geometries.

Fig. S2. a) The absorption coefficient of BT-FPDI and fBT-FPDI blend films. b) The cyclic voltammetry of BT-FPDI and fBT-FPDI in thin film.

Fig. S3. The temperature-dependent UV-vis absorption of BT-FPDI and fBT-FPDI in chlorobenzene solution. (a) BT-FPDI from 30 °C to 100 °C; (b) BT-FPDI cooling from 100 °C to 30 °C; (c) fBT-FPDI from 30 °C to 100 °C; (d) fBT-FPDI cooling from 100 °C to 30 °C.

Fig. S4. LUMO and HOMO ene4rgy levels of BT-FPDI and fBT-FPDI calculated by DFT/B3LYP/6-31G.

Fig. S5. The current density-voltage curves of PTB7-Th:BT-FPDI device by treated with different annealing temperatures (a) and various volume fraction of additives (b).

Table S1 The photovoltaic performances of fullerene-free OSCs based on PTB7-Th:BT-FPDI

Temperature	Additive	$V_{\rm oc}$ (V)	$J_{\rm sc}({\rm mA/cm^2})$	FF (%)	PCE (%)
80°	w/o	0.82	15.91	50.40	6.59
100°	w/o	0.81	16.96	56.90	7.80
110°	w/o	0.81	16.62	57.4	7.69
120°	w/o	0.81	15.3	59.29	7.38
150°	w/o	0.81	16.12	51.37	6.74
100°	1%CN	0.81	15.76	51.44	6.60
100°	2%CN	0.81	17.65	50.10	7.19
100°	3%CN	0.81	16.16	52.40	6.87
100°	5%CN	0.82	15.51	51.34	6.51
100°	0.25%DIO	0.80	15.68	58.2	7.30
100°	0.5%DIO	0.81	17.35	57.67	8.07
100°	1%DIO	0.81	14.07	59.9	6.75
100°	3%DIO	0.80	11.80	59.4	5.61

with different annealing temperatures and the additive.

Fig. S6. The current density-voltage curves of PTB7-Th:fBT-FPDI device by treated with different annealing temperatures (a) and various volume fraction of additive (b).

Table S2 The photovoltaic performances of fullerene-free OSCs based on PTB7-Th:fBT-FPDI with different annealing temperatures and the additive.

.

Temperature	Additive	$V_{\rm oc}$ (V)	$J_{\rm sc}({\rm mA/cm^2})$	FF (%)	PCE (%)
80°	w/o	0.82	11.84	52.09	5.06
100°	w/o	0.82	11.36	58.64	5.47
110°	w/o	0.82	11.79	55.66	5.38
120°	w/o	0.82	11.27	56.64	5.23
150°	w/o	0.82	11.7	51.22	4.92
100°	0.25%DIO	0.83	12.30	57.50	5.89
100°	0.5%DIO	0.82	11.00	57.90	5.23
100°	1%DIO	0.82	10.26	55.2	4.64
100°	3%DIO	0.82	8.68	58.44	4.15

Fig. S7. Two-dimensional (2D) GIWAXS pattern of PTB7-Th (a), and azimuth intensity profiles of BT-FPDI and fBT-FPDI for both pristine and blend film (b).

Fig. S8. The ¹H NMR and ¹³C NMR spectra of BT-FPDI.

Fig. S9. The ¹H NMR and ¹³C NMR spectra of fBT-FPDI.