Electric Supplementary Information

A universal KOH-free strategy towards nitrogen-doped carbon nanosheets for high rate and high energy storage

Gang Yuan,^a Wanwen Huang,^a Kaixiu Guan, ^a Huimin Li,^a Yingjun Xie,^a Yeru

Liang,^{ab} Yingliang Liu,^{ab} Mingtao Zheng*^{ab}

^a Department of Materials Science and Engineering, College of Materials and Energy,

South China Agricultural University, Guangzhou 510642, China.

^b Guangdong Provincial Engineering Technology Research Center for Optical
 Agriculture, Guangzhou 510642, China

E-mail: mtzheng@scau.edu.cn (M. Zheng), tliuyl@scau.edu.cn (Y. Liu); Fax: +86 20 8528 0319

*Corresponding author. E-mail: <u>mtzheng@scau.edu.cn</u> (M. Zheng).

Fig. S1. The high-resolution SEM images of (a) N-CNS, (b) N-SCNS-1, (c) N-SCNS-

3, (d) N-SCNS-5.

Fig. S2. (a) The cumulative pore volume plots of N-CNS, N-SCNSs and PC-KOH. (b) The N_2 adsorption/desorption isotherms of N-CNS-800.

			1			
Samples	C_{total} (%)	O _{total} (%)	N _{total} (%)	N-5/N _{total}	N-6/N _{total}	N-Q/N _{total}
N-CNS	84.29	10.95	4.76	0.315	0.425	0.26
N-SCNS-1	87.88	7.16	4.96	0.38	0.46	0.16
N-SCNS-3	88.48	7.14	4.38	0.23	0.54	0.23
N-SCNS-5	90.38	6.66	2.96	0.21	0.58	0.21
SCNS-1	91.18	6.29	2.53	0.2	0.6	0.2
РС-КОН	89.64	8.70	1.66	0.35	0.45	0.2

Table S1. The detailed element content of C, N, and O, and the content of different N-dopants

Fig. S3. The high-resolution N 1s XPS spectra of N-CNS, N-SCNSs, SCNS-1, and PC-KOH.

Fig. S4. (a) The CV curves of N-CNS and N-SCNSs at a scan rate of 50 mV s⁻¹. (b) The GCD plots of N-CNS and N-SCNSs at a current density of 0.5 A g⁻¹.

Materials	Activator	Electrolyte	Specific capacitance (F g ⁻¹)	Specific capacitance (F g ⁻¹)	Cycling performance	Reference
Porous carbons	КОН	6 M KOH	286.6 (0.5 A g ⁻¹)	212 (30 A g ⁻¹)	96% after 20 000 cycles	R1
Hierarchical porous carbons	КОН	6 M KOH	379 (0.5 A g ⁻¹)	200 (50 A g ⁻¹)	90% after 20 000 cycles	R2
Porous carbons	CuCl ₂	6 M KOH	390 (0.5 A g ⁻¹)	260 (50 A g ⁻¹)	92.9% after 20 000 cycles	R3
porous carbon sheets	NaCl/KCl	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	407 (0.5 A g ⁻¹)	246 (20 A g ⁻¹)	92.6% after 20 000 cycles	R4
Porous carbons	ZnCl ₂	6 M KOH	252 (0.5 A g ⁻¹)	145 (50 A g ⁻¹)	100% after 10 000 cycles	R5
Porous graphitic carbons	K ₂ FeO ₄	6 M KOH	222 (0.5 A g ⁻¹)	115 (20 A g ⁻¹)		R6
Graphene-like carbons	HAc+H ₂ O ₂	6 M KOH	340 (0.5 A g ⁻¹)	240 (20 A g ⁻¹)	98% after 10 000 cycles	R7
Hierarchical porous carbons	Pyrolysis	6 M KOH	244.5 (0.2 A g ⁻¹)	200 (40 A g ⁻¹)	91.6% after 10 000 cycles	R8
Porous carbons	KOH/Urea	6 M KOH	400 (0.5 A g ⁻¹)	226 (50 A g ⁻¹)	96% after 10 000 cycles	R9
carbon nanospheres	КОН	6 M KOH	264 (0.5 A g ⁻¹)	205 (20 A g ⁻¹)	96.1% after 10 000 cycles	R10
Porous carbons	КОН	6 M KOH	255 (0.5 A g ⁻¹)	205 (10 A g ⁻¹)	98% after 10 000 cycles	R11
Porous carbons	КОН	6 M KOH	401 (0.5 A g ⁻¹)	210 (50 A g ⁻¹)	93.8% after 10 000 cycles	R12
Graphene-like carbons	КОН	6 M KOH	374 (0.5 A g ⁻¹)	293 (5 A g ⁻¹)	99% after 10 000 cycles	R13
Nitrogen-doped carbon nanosheets	POM/DCD	6 M KOH	340 (0.5 A g ⁻¹)	282 (50 A g ⁻¹)	100% after 20 000 cycles	This Work

Table S2. The comparison of specific capacitance and cycling performance for N-SCNS-1 with reported carbon materials in three-electrode system

Fig. S5. The cumulative pore volume plots of SCNS and N-SCNS-1.

Fig. S6. The electrochemical performance of porous carbons derived from rapeseed dregs (a, b, c) and soybean meal (d, e, f) in three-electrode system with 6.0 M KOH as electrolyte. (a, d) The CV curves of N-CNS, N-SCNS-1, and SCNS-1 at a scan rate of 50 mV s⁻¹. (b, e) The GCD plots of N-CNS, N-SCNS-1, SCNS-1 at a current density of 0.5 A g⁻¹. (c, f) The rate capability of the as-prepared N-CNS, N-SCNS-1, and SCNS-1.

Fig. S7. The CV curves of N-SCNS-1 with 1.0 M LiPF₆ electrolyte solution in twoelectrode system.

Fig. S8. The GCD plots of N-SCNS-1 with 1.0 M Na₂SO₄ electrolyte solution in twoelectrode system.

Materials	Energy density (Wh kg ⁻¹)	Power density (W kg ⁻¹)	Electrolyte	References
Carbon nanosheets	23.7	500	1 M Na ₂ SO ₄	R12
Porous carbons	22	90	1 M Na ₂ SO ₄	R13
Porous carbon aerogels	16.97	200	1 M Na ₂ SO ₄	R14
Hierarchical porous carbons	20.6	226.8	1 M Na ₂ SO ₄	R15
Porous carbons	24.2	400	1 M Na ₂ SO ₄	R16
Carbon nanosheets	21.5	456.5	1 M Na ₂ SO ₄	R17
Porous carbons	21	180	1 M Na ₂ SO ₄	R18
Porous carbon nanofibers	30	65	1 M LiPF ₆	R19
Porous carbons	44.6	300	1 M LiPF ₆	R20
Carbon nanoflakes	46.19	300	1 M LiPF ₆	R21
Meso-carbon materials	25	700	1 M LiPF ₆	R22
Nitrogen-doned carbon nanosheets	24.1	220	1 M Na ₂ SO ₄	This Work
wittogen-uoped carbon nanosneets	55.5	369	1 M LiPF ₆	I IIIS VV UI K

Table S3. The comparison of energy density for N-SCNS-1 with previously reported carbon materials in two-electrode system

References

- R1. Y. Zhao, M. Lu, P. Tao, Y. Zhang, X. Gong, Z. Yang, G. Zhang and H. Li, *J. Power Sources*, 2016, 307, 391-400.
- R2. H. Feng, M. Zheng, H. Dong, Y. Xiao, H. Hu, Z. Sun, C. Long, Y. Cai, X. Zhao, H. Zhang, B. Lei and Y. Liu, *J. Mater. Chem. A*, 2015, 3, 15225-15234.
- R3. S. Liu, Y. Liang, W. Zhou, W. Hu, H. Dong, M. Zheng, H. Hu, B. Lei, Y. Xiao and Y. Liu, J.
 Mater. Chem. A, 2018, 6, 12046-12055.
- R4. C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu and K. Jiang, J. Mater. Chem. A, 2018, 6, 1244-1254.
- R5. X. Deng, B. Zhao, L. Zhu and Z. Shao, *Carbon*, 2015, **93**, 48-58.
- R6. Y. Gong, D. Li, C. Luo, Q. Fu and C. Pan, *Green Chem.*, 2017, 19, 4132-4140.
- R7. S. Lu, M. Jin, Y. Zhang, Y. Niu, J. Gao and C. Li, Adv. Energy Mater., 2018, 8.
- R8. F. Liu, Z. Wang, H. Zhang, L. Jin, X. Chu, B. Gu, H. Huang and W. Yang, *Carbon*, 2019, 149, 105-116.
- R9. F. Zhang, T. Liu, J. Zhang, E. Cui, L. Yue, R. Jiang and G. Hou, *Carbon*, 2019, 147, 451-459.
- R10. X. Yu, J. Lu, C. Zhan, R. Lv, Q. Liang, Z. Huang, W. Shen and F. Kang, *Electrochim. Acta*, 2015, **182**, 908-916.
- R11. K. M. Horax, S. Bao, M. Wang and Y. Li, Chinese Chem. Lett., 2017, 28, 2290-2294.
- R12. S. Lei, L. Chen, W. Zhou, P. Deng, Y. Liu, L. Fei, W. Lu, Y. Xiao and B. Cheng, J. Power Sources, 2018, 379, 74-83.
- R13. C. Long, X. Chen, L. Jiang, L. Zhi and Z. Fan, Nano Energy, 2015, 12, 141-151.
- R14. J. Guo, D. Wu, T. Wang and Y. Ma, Appl. Surf. Sci., 2019, 475, 56-66.
- R15. J. Huang, Y. Liang, H. Hu, S. Liu, Y. Cai, H. Dong, M. Zheng, Y. Xiao and Y. Liu, J. Mater. Chem. A, 2017, 5, 24775-24781.
- R16. G. Zhao, C. Chen, D. Yu, L. Sun, C. Yang, H. Zhang, Y. Sun, F. Besenbacher and M. Yu, *Nano Energy*, 2018, 47, 547-555.
- R17. X. Zhang, H. Li, B. Qin, Q. Wang, X. Xing, D. Yang, L. e. Jin and Q. Cao, J. Mater. Chem. A, 2019, 7, 3298-3306.
- R18. Y. Li, G. Wang, T. Wei, Z. Fan and P. Yan, *Nano Energy*, 2016, 19, 165-175.

- R19. T. Le, H. Tian, J. Cheng, Z.-H. Huang, F. Kang and Y. Yang, *Carbon*, 2018, **138**, 325-336.
- R20. H. Que, C. Chang, X. Yang, F. Jiang and M. Li, Int. J. Electrochem. Sci., 2019, 14, 3477-3493.
- R21. Y. Yao, Y. Zhang, L. Li, S. Wang, S. Dou and X. Liu, ACS Appl. Mater. Interfaces, 2017, 9, 34944-34953.
- R22. H. Xia, J. Hu, J. Li and K. Wang, *RSC Adv.*, 2019, **9**, 7004-7014.