High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties Supporting information

Chaoqiong Zhu^a, Ziming Cai^a, Bingcheng Luo^{a,b}, Limin Guo^c, Longtu Li^a, Xiaohui

Wang^{a,1}

^a State Key Laboratory of New Ceramics and Fine Processing, School of Materials

Science and Engineering, Tsinghua University, Beijing 100084, China

^b Department of Engineering, University of Cambridge, CB30FA Cambridge, United

Kingdom

^c School of Science, Beijing University of Posts and Telecommunications, Beijing

100876, China

Dr. Z. Cai and Dr. C. Zhu contribute equally to this work.

¹Author to whom correspondence should be addressed: wxh@mail.tsinghua.edu.cn

1. Hysteresis loops and current-electric-field relations

Figure S1. *P-E* loops of the (1-*x*)BNTSZ-*x*NN ceramics with *x* of (a) 0.05, (b) 0.1, (c)

0.15, (d) 0.2, measured under various applied electric fields at room temperature, 1Hz.

Figure S2. The current-electric-field relations corresponding to (a) to (d) of Figure S1.

Figure S3. The temperature-dependent *P-E* loops of the (1-x)BNTSZ-xNN ceramics with *x* of (a) 0.05, (b) 0.1, (c) 0.15, (d) 0.2, measured at the temperature range from 30 °C to 180 °C under the applied electric field of 120 kV/cm at 1 Hz.

Figure S4. The remanent polarization and maximum polarizations as functions of temperature of these BNTSZ-NN ceramics extracted from Figure S3.

Figure S5. The current-electric-field relations corresponding to (a) to (d) of Figure S3.

Figure S6. *P-E* loops of the (1-*x*)BNTSZ-*x*NN ceramics with *x* of (a) 0.05, (b) 0.1, (c)

0.15, (d) 0.2, measured under various applied electric fields at 120 °C, 1Hz.

Figure S7. The current-electric-field relations corresponding to (a) to (d) of Figure S6.

2. Gaussian-Lorentzian fitting of Raman spectra

Figure S8. Fitting of Raman spectra of the 0.8BNTSZ-0.2NN ceramic according to the Gaussian–Lorentzian function at the measured temperature of (a) 0 $^{\circ}$ C, (b) 25 $^{\circ}$ C, (c) 100 $^{\circ}$ C, (d) 250 $^{\circ}$ C.