Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Effect of Low Oxygen Annealing on Photoelectrochemical Water Splitting Properties of α-Fe₂O₃

Yoichi Makimizu,^{ab} JeongEun Yoo,^a Mahshid Poornajar,^a Nhat Truong Nguyen,^a† Hyo-Jin Ahn,^{ac}‡ Imgon Hwang,^a Stepan Kment^c and Patrik Schmuki^{*acd}

^a Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany

^b Steel Research Laboratory, JFE Steel Corporation, 1, Kokan-cho, Fukuyama, Hiroshima 721-8510, Japan

^c RCPTM, Faculty of Science, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czechia

^d Chemistry Department, Faculty of Sciences, King Abdulaziz University, 80203 Jeddah, Saudi Arabia Kingdom

- [†] Current address: Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- [‡] Current address: German Engineering Research and Development Center LSTME Busan, Affiliate Institute to FA Universität 7 Erlangen, 1276, Jisa-Dong, Gangseo-Gu, Busan 46742, Republic of Korea

Figure S1. Some examples of anodization anodic current-time curves for Fe layers on FTO glass.

Figure S2. X-ray photoelectron spectra of Fe 2p shown in Fig. 3(d) and curves fitted to Fe²⁺ and Fe³⁺ for α -Fe₂O₃ annealed under various conditions.

Figure S3. EPR spectra of α -Fe₂O₃ after annealing at 600 °C in 0.03% O₂-Ar and air ambient.

Figure S4. *I-V* curves collected by conductivity measurements for α -Fe₂O₃ annealed under various conditions.

Figure S5. *I-V* curves and resistance value collected by conductivity measurements for FTO substrate annealed under various conditions.

Figure S6. (a) Photocurrent-time (*J-t*) curves and (b) amount of oxygen generation measured under illumination (AM 1.5 G, 100 mW/cm²) at 1.5 V vs. RHE in 1.0 M KOH electrolyte for α -Fe₂O₃ layers after annealing at 600 °C in 0.03% O₂-Ar ambient.

Figure S7. (a) Photocurrent-potential (*J-V*) curves with chopped light illumination (AM 1.5G, 100 mW/cm²) and (b) IPCE spectra measured at 1.5 V vs. RHE for compact α -Fe₂O₃ layers annealed at 600 °C in 0.03% O₂-Ar ambient. All samples were measured in 1.0 M KOH electrolyte.

	600-LO	750-Air	750-LO	600-Air
$R_{\rm S} (\Omega)$	301	13	151	13
$R_1 (\Omega)$	611	1980	2351	15800
$R_2 (\Omega)$	3526	3834	8861	19187
C_1 (F)	5.05 x 10 ⁻⁴	3.33 x 10 ⁻⁵	2.47 x 10 ⁻⁵	5.94 x 10 ⁻⁶
C_2 (F)	2.44 x 10 ⁻⁵	8.70 x 10 ⁻⁶	4.10 x 10 ⁻⁵	2.39 x 10 ⁻⁵

Table S1. EIS fitting results for α -Fe₂O₃ annealed under various conditions.

Figure S8. Typical transient photocurrent response of α -Fe₂O₃ electrode.

Figure S9. (a) Photocurrent-potential (*J-V*) curves with chopped light illumination (AM 1.5G, 100 mW/cm²) and (b) IPCE spectra measurement at 1.5 V vs. RHE for α -Fe₂O₃ layer decorated with FeOOH. All samples were measured in 1.0 M KOH electrolyte.

Fabrication technique S	Substrate	Annealing		Material	Additional treatment	Electrolyte	Illumination	Photocurrent / mA cm ⁻²	Ref.
		Temp. / °C	Atmosphere					at 1.5 V vs. RHE	
Two-step anodization	Fe foil	400	02	Hematite	-	0.01 M NaSO ₄	AM 1.5 G, 100 mW/cm ²	0.88 (at 0.6 V vs Ag/AgCl)	65
Anodization	FTO	500	10%H ₂ -Ar	Hematite		1 M KOH	Xe lamp, 100 mW/cm ²	0.6	66
Anodization	FTO	750	Ar	Hematite		1 M KOH	AM 1.5 G, 100 mW/cm ²	0.4	32
Anodization	FTO	550	Air	Hematite	-	1 M NaOH	NA	0.47	67
Anodization	FTO	750	Air	Hematite		1 M NaOH	AM 1.5 G, 100 mW/cm ²	0.2	33
Anodization			Air	Hematite	-	1 M NaOH	AM 1.5 G, 100 mW/cm ²	0.05	- 68
	FTO	500		Hematite/ Amorphous Ti-Oxide	-			0.2	
Anodization with rotation	Fe foil	500	Ar	Hematite Magnetite	-	1 M KOH	AM 1.5 G, 100 mW/cm ²	0.11	69
Anodization	Mild stool	450	Air	Hematite Magnetite	L-Cysteine treatment	– 1 M NaOH	AM 1.5 G, 100 mW/cm ²	0.8	- 70
	willu steel	430			-			0.1	
Anodization with rotation	Fe rod	500	Ar	Hematite Magnetite	-	1 M KOH	AM 1.5 G, 100 mW/cm ²	0.11	71
Modulated anodization			NA	Hematite Magnetite	-	1 M KOH	AM 1.5 G, 100 mW/cm ²	0.32	72
	Fe foil	600			Sn-doped			0.67	
					Co-Pi / Sn-doped			0.73	
Anodization	FTO	600	0.03%O ₂ -Ar	Hematite	-	 1 М КОН 	AM 1.5 G, 100 mW/cm ²	1.1	 This study
					FeOOH			1.3	

Table S2. photocurrent densities of recent reports and present study on anodized α -Fe₂O₃ layer.