Supplementary Information

Electrochemical reduction of N₂ to ammonia on Co single atoms embedded N-doped porous carbon under ambient conditions

Yanming Liu,^a Qi Xu,^a Xinfei Fan,^b Xie Quan,*^a Yan Su,^c Shuo Chen,^a Hongtao Yu,^a Zhengjun Cai ^a

^aKey Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

^bCollege of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.

^cSchool of Physics and Opto-Electronic Technology, Dalian University of Technology, Dalian 116024, China.

Corresponding author E-mail: quanxie@dlut.edu.cn

This file includes:

Fig. S1. SEM of ZIF and TEM images of CSA/NPCs.

- Fig. S2. Structure characterization of CSA/NPCs.
- Fig. S3. Cyclic voltammograms and chronoamperometric curves.
- Fig. S4. Hydrazine detection.
- Fig. S5. ¹H-NMR spectra for ${}^{14}NH_4^+$ and ${}^{15}NH_4^+$ detection.
- Fig. S6. NH₃ production rates of CSA/NPC-700.
- Fig. S7. H₂ efficiency of CSA/NPC-750.
- Fig. S8. SEM images before and after N_2 reduction.
- Fig. S9. XPS spectra before and after N_2 reduction.
- Fig. S10. Potentiostatic stability of CSA/NPC-750.
- Fig. S11.SEM and TEM images for NPC-750 and Co/NPC-750.
- Fig. S12. XPS spectra of CSA/NPCs.
- Fig. S13. N₂ adsorption comparison.
- Fig. S14. Free energy for ammonia synthesis.
- Table S1. The EXAFS fitting results of CSA/NPC-750.

Table S2. Comparison of NH₃ synthesis performance between CSA/NPC-750 and electrocatalysts reported.

- Table S3. The N/C and Co/C ratios for CSA/NPC-750 before and after N_2 reduction.
- Table S4. The metal and N contents of CSA/NPCs, NPC-750 and Co/NPC-750.

1. Supplementary Figures

Fig. S1 (A) SEM image of Zn/Co bimetallic ZIF precursor, TEM images of (B) CSA/NPC-750, (C) CSA/NPC-850 and (D) CSA/NPC-950.

Fig. S2 (A) X-ray diffraction spectra and (B) pore size distribution of CSA/NPC-750, CSA/NPC-850 and CSA/NPC-950 (DFT method).

Fig. S3 (A) Cyclic voltammograms of CSA/NPC-750 on glassy carbon in N_2 or Ar saturated 0.05 M Na_2SO_4 with scan rate of 20 mV s⁻¹, (B) Chronoamperometric curves for electrochemical reduction of N_2 on CSA/NPC-750 at 0.0~-0.4 V (vs RHE).

Fig. S4. UV-Vis curves of 0.05 M Na₂SO₄ and the sample for N₂ reduction on CSA/NPC-750 (1 h, -0.2 V, 0.05 M Na₂SO₄) measured by p-dimethylaminobenzaldehyde method.

To find out whether hydrazine can be produced, electrochemical reduction of N_2 was conducted on CSA/NPC-750 at -0.2 V in 0.05 M Na₂SO₄ for 1 h and hydrazine concentration of the solution was measured by p-dimethylaminobenzaldehyde spectrophotometric method. Details as follows: 2.0 g p-dimethylaminobenzaldehyde, 100 mL ethanol and 10 mL HCl (12.0 mol/L) were mixed and used as color reagent. 0.8 mL color reagent was added into a mixture of 2.0 mL solution (taken from electrochemical cell

after N₂ reduction for 1 h) and 2.0 mL HCl (0.24 mol/L). After mixing thoroughly, the resulting solution sat for 20 min. Its absorbance was measured at 458 nm. The absorbance of 0.05 M Na₂SO₄ was used as reference. As shown in Fig. S4, the absorbance of the sample obtained from N₂ reduction on CSA/NPC-750 at -0.2 V is 0.0211, which is similar to that of 0.05 M Na₂SO₄ (0.0209). Therefore, hydrazine is not produced during N₂ reduction on CSA/NPC-750.

To confirm ammonia is produced from N₂ reduction, ¹⁵N₂ reduction has been performed on CSA/NPC-750 at 0.05 M Na₂SO₄. Details as follows: Ar purge was undertaken for 30 min to remove ¹⁴N₂ in the cell and electrolyte, followed by ¹⁵N₂ purge for 20 min. Electrochemical reduction of ¹⁵N₂ was conducted on CSA/NPC-750 at -0.2 V with ¹⁵N₂ flow. After ¹⁵N₂ reduction for 1 h, the sample was collected and adjusted to pH 2 with HCl for ammonia quantification by H-NMR on Bruker 700 MHz spectrometer with DMSO as internal standards. The sample was mixed with 0.2 mM DMSO (D₂O was used as solvent) with ratio of 9:1. H-NMR measurement was performed for 2500 scans with water suppression. As reference, electrolysis was also conducted under Ar on CSA/NPC-750 (-0.2 V, 1 h) and the solution was collected for ¹H-NMR measurement with the same method mentioned above. As reference, the ¹H-NMR spectrum of 0.5 mM ¹⁴NH₄Cl (pH 2) was measured by the same method with 250 scans. Calibration curve for ¹⁵NH₄⁺ was tested using ¹⁵NH₄Cl with concentrations of 0-300 uM. As shown in Fig. S5A, doublet at 6.93 ppm and 7.08 ppm can be observed on the ¹H-NMR spectrum for ¹⁵N₂ reduction sample, while triplet around 6.91-7.09 ppm appear on the ¹H-NMR spectrum for ¹⁴NH₄⁺ standard sample and no discernable peak can be observed for electrolysis under Ar. The doublet (6.93 ppm and 7.08 ppm) for ¹⁵N₂ reduction sample can be attributed to the signal of ¹⁵NH₄^{+,1} and the triplet (6.91-7.09 ppm) arises from ¹⁴NH₄⁺. The ¹⁵N labelling and Ar electrolysis experiments indicate the detected ammonia in this work is produced from N₂ reduction. To confirm it, the ¹⁵NH₄⁺ produced from ¹⁵N₂ reduction is quantified with the calibration curve in Fig. S5B, which shows the peak area ratio of ¹⁵NH₄⁺/DMSO versus ¹⁵NH₄⁺ concentration. The obtained ¹⁵NH₄⁺ production rate is 0.82 μ mol cm⁻² h⁻¹, consistent with result of 0.86 μ mol cm⁻² h⁻¹ from ¹⁴N₂ reduction. These results confirm the ammonia detected in this work is produced from N₂ reduction.

Fig. S5 ¹H-NMR spectra for (A) 0.5 mM NH₄⁺ standard (250 scans), ¹⁵N₂ reduction and Ar electrolysis on CSA/NPC-750 at -0.2 V (2500 scans), (B) calibration curve for ¹⁵NH₄⁺: the peak area ratio of ¹⁵NH₄⁺/DMSO versus ¹⁵NH₄⁺ concentration.

Fig. S6 The NH₃ production rates of CSA/NPC-700 for electrochemical reduction of N_2 at -0.1~-0.3 V (vs RHE) and 0.05 M Na₂SO₄.

Fig. S7 The H_2 production efficiencies during electrochemical reduction of N_2 on CSA/NPC-750 at -0.2 V and -0.3 V.

Fig. S8 SEM images of CSA/NPC-750 electrode (A) before and (B) after electrochemical reduction of N_2 at -0.2 V.

Fig. S9 (A) C 1s, (B) N 1s and (C) Co 2p XPS spectra of CSA/NPC-750 before and after electrochemical reduction of N_2 at -0.2 V.

Fig. S10 Chronoamperometric curve and NH_3 production efficiency during electrochemical reduction of N_2 on CSA/NPC-750 at -0.2 V.

Fig. S11 SEM images of (A) NPC-750 and (B) Co/NPC-750, (C) low and (D) high resolution TEM images of Co/NPC-750.

Fig. S12 (A) XPS survey scan spectra of CSA/NPCs, N 1s XPS spectra of (B) CSA/NPC-750, (C) CSA/NPC-850 and (D) CSA/NPC-950.

Fig. S13 N₂-TPD curves of CSA/NPC-750 and NPC-750.

DFT calculation was conducted on Vienna Ab-initio Simulation Package (VASP) with the projector augmented wave (PAW) potentials, the generalized gradient approximation (GGA) parameterized by Perdew, Burke and Ernzerhof (PBE) for texchange correlation functional.^{2,3} The Co single atoms embedded N-doped carbon (CSA/NPC) with a 7×7 unit cell was used as model (Fig. S14). Both Co atoms coordinated with four N atoms (Co-N4) and pyridinic N were considered in this model. The kinetic energy cutoff was set to 400 eV for the plane-wave basis. To eliminate the interaction of periodic images of the system, vacuum layer above the CSA/NPC plane was selected to be 20 Å. The model structures are optimized by using thresholds for the total energy of 10^{-4} eV and force of 0.01 eV/Å. The free energy of possible reaction pathways for NH₃ synthesis was calculated⁴⁻⁶ as follows: $\Delta G = \Delta E_{DFT} + \Delta E_{ZPE} - T\Delta S$, where ΔE_{DFT} is the DFT total energy, ΔE_{ZPE} is the zero-point energy, and T ΔS is the entropy difference between the initial adsorbed state and final state. During the DFT calculation, the H, N₂H_x and NH_x adsorbed on CSA/NPC are optimized by searching all the possible structures and find the lowest energy ones.

Fig. S14 The model of CSA/NPC used for DFT calculation.

2. Supplementary tables

Electrocatalysts	Bond type	Ν	R	σ^2	ΔE_0 (eV)
CSA/NPC-750	Co-N	4.0	1.89	0.0034	-6.7

N is the coordination number, R is the distance between absorber and backscatter atoms, σ^2 is the Debye-Waller factor value, ΔE_0 is edge-energy shift

Electrocatalysts	Production rate (μmol h ⁻¹ cm ⁻²)	Efficiency (%)	Conditions	References
Au/CeO _x -RGO	0.098	10.1%	-0.2 V, pH 2	Adv. Mater. 2017, 29, 1700001
Au nanorod	0.097	8.11%	-0.2 V, pH 13	Adv. Mater. 2017, 29, 1604799
Fe ₂ O ₃ /CNT	0.013	0.18%	-1.4 V, pH 7	Angew. Chem. Int. Ed. 2017, 56, 2699
MoS ₂	0.29	1.17%	-0.5 V, pH 7	Adv. Mater. 2018, 30, 1800191
Carbon nitride	0.95	11.59%	-0.2 V, pH 1	Angew. Chem. Int. Ed. 2018, 57, 10246
CSA/NPC	0.86	10.5%	-0.2 V, pH 7	This work

Table S2. Comparison of NH₃ synthesis performance between CSA/NPC-750 and electrocatalysts reported recently

Table S3. The N/C and Co/C ratios obtained from XPS for CSA/NPC-750 before and after electrochemical reduction of N_2 at -0.2 V.

	N/C ratio	Co/N ratio
Before use	0.319	0.0152
After use	0.335	0.0146

XPS is used to quantify CSA/NPC-750 before and after electrochemical reduction of N_2 at -0.2 V. As shown in Figure S11 and Table S3, the atom ratios of N/C and Co/C are 0.319 and 0.0152 before use. After electrochemical reduction of N_2 for six cycles (1 h for each cycle), the N/C ratio is 0.335. The slightly increased N content could be caused by measurement error and/or adsorbed ammonia. The Co/C ratio is 0.0146 after use, which can be considered as the same before reaction.

Electrocatalysts	Co content	Zn content	N content
CSA/NPC-750	1.4 wt%	4.3 wt%	20.6 at.%
CSA/NPC-850	1.5 wt%	1.8 wt%	15.3 at.%
CSA/NPC-950	1.8 wt%	0.03 wt%	13.0 at.%
NPC-750	0	4.2 wt%	20.7 at.%
Co/NPC-750	8.2 wt%	4.1 wt%	21.8 at.%

Table S4. The metal and N contents of CSA/NPCs, NPC-750 and Co/NPC-750

Metal content is measured by inductively coupled plasma atomic emission spectroscopy, N content is measured by XPS.

3. References

1. F. Zhou, L. M. Azofra, M. Ali, M. Kar, A. N. Simonov, C. McDonnell-Worth, C. Sun, X. Zhang, D. R. MacFarlane, *Energy Environ. Sci.* **2016**, *9*, 2545-2549.

2. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.

3. G. Kresse and J. Hafner, Phys. Rev., 1993, 47, 558-561.

4. Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si and J. Zeng, *Adv. Mater.*, 2018, **30**, 1803498.

5. S. Back and Y. Jung, Phys. Chem. Chem. Phys., 2016, 18, 9161-9166.

6. X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma and G. Zheng, Joule, 2018, 2, 1610-1622.