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1. Supplementary Figures
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Fig. S1 (A) SEM image of Zn/Co bimetallic ZIF precursor, TEM images of (B) CSA/NPC-750, (C) 

CSA/NPC-850 and (D) CSA/NPC-950.
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Fig. S2 (A) X-ray diffraction spectra and (B) pore size distribution of CSA/NPC-750, CSA/NPC-850 and 

CSA/NPC-950 (DFT method).
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Fig. S3 (A) Cyclic voltammograms of CSA/NPC-750 on glassy carbon in N2 or Ar saturated 0.05 M 

Na2SO4 with scan rate of 20 mV s-1, (B) Chronoamperometric curves for electrochemical reduction of N2 

on CSA/NPC-750 at 0.0~-0.4 V (vs RHE).
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Fig. S4. UV-Vis curves of 0.05 M Na2SO4 and the sample for N2 reduction on CSA/NPC-750 (1 h, -0.2 V, 

0.05 M Na2SO4) measured by p-dimethylaminobenzaldehyde method.

To find out whether hydrazine can be produced, electrochemical reduction of N2 was conducted on 

CSA/NPC-750 at -0.2 V in 0.05 M Na2SO4 for 1 h and hydrazine concentration of the solution was 

measured by p-dimethylaminobenzaldehyde spectrophotometric method. Details as follows: 2.0 g p-

dimethylaminobenzaldehyde, 100 mL ethanol and 10 mL HCl (12.0 mol/L) were mixed and used as color 

reagent. 0.8 mL color reagent was added into a mixture of 2.0 mL solution (taken from electrochemical cell 
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after N2 reduction for 1 h) and 2.0 mL HCl (0.24 mol/L). After mixing thoroughly, the resulting solution 

sat for 20 min. Its absorbance was measured at 458 nm. The absorbance of 0.05 M Na2SO4 was used as 

reference. As shown in Fig. S4, the absorbance of the sample obtained from N2 reduction on CSA/NPC-750 

at -0.2 V is 0.0211, which is similar to that of 0.05 M Na2SO4 (0.0209). Therefore, hydrazine is not produced 

during N2 reduction on CSA/NPC-750.

To confirm ammonia is produced from N2 reduction, 15N2 reduction has been performed on CSA/NPC-

750 at 0.05 M Na2SO4. Details as follows: Ar purge was undertaken for 30 min to remove 14N2 in the cell 

and electrolyte, followed by 15N2 purge for 20 min. Electrochemical reduction of 15N2 was conducted on 

CSA/NPC-750 at -0.2 V with 15N2 flow. After 15N2 reduction for 1 h, the sample was collected and adjusted 

to pH 2 with HCl for ammonia quantification by H-NMR on Bruker 700 MHz spectrometer with DMSO 

as internal standards. The sample was mixed with 0.2 mM DMSO (D2O was used as solvent) with ratio of 

9:1. H-NMR measurement was performed for 2500 scans with water suppression. As reference, electrolysis 

was also conducted under Ar on CSA/NPC-750 (-0.2 V, 1 h) and the solution was collected for 1H-NMR 

measurement with the same method mentioned above. As reference, the 1H-NMR spectrum of 0.5 mM 
14NH4Cl (pH 2) was measured by the same method with 250 scans. Calibration curve for 15NH4

+ was tested 

using 15NH4Cl with concentrations of 0-300 uM. As shown in Fig. S5A, doublet at 6.93 ppm and 7.08 ppm 

can be observed on the 1H-NMR spectrum for 15N2 reduction sample, while triplet around 6.91-7.09 ppm 

appear on the 1H-NMR spectrum for 14NH4
+

 standard sample and no discernable peak can be observed for 

electrolysis under Ar. The doublet (6.93 ppm and 7.08 ppm) for 15N2 reduction sample can be attributed to 

the signal of 15NH4
+,1 and the triplet (6.91-7.09 ppm) arises from 14NH4

+. The 15N labelling and Ar 

electrolysis experiments indicate the detected ammonia in this work is produced from N2 reduction. To 

confirm it, the 15NH4
+ produced from 15N2 reduction is quantified with the calibration curve in Fig. S5B, 

which shows the peak area ratio of 15NH4
+/DMSO versus 15NH4

+ concentration. The obtained 15NH4
+ 

production rate is 0.82 μmol cm-2 h-1, consistent with result of 0.86 μmol cm-2 h-1 from 14N2 reduction. 

These results confirm the ammonia detected in this work is produced from N2 reduction. 
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Fig. S5 1H-NMR spectra for (A) 0.5 mM NH4
+ standard (250 scans), 15N2 reduction and Ar electrolysis on 

CSA/NPC-750 at -0.2 V (2500 scans), (B) calibration curve for 15NH4
+: the peak area ratio of 

15NH4
+/DMSO versus 15NH4

+ concentration.
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Fig. S6 The NH3 production rates of CSA/NPC-700 for electrochemical reduction of N2 at -0.1~-0.3 V (vs 

RHE) and 0.05 M Na2SO4. 
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Fig. S7 The H2 production efficiencies during electrochemical reduction of N2 on CSA/NPC-750 at -0.2 V 

and -0.3 V. 

Fig. S8 SEM images of CSA/NPC-750 electrode (A) before and (B) after electrochemical reduction of N2 

at -0.2 V.
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Fig. S9 (A) C 1s, (B) N 1s and (C) Co 2p XPS spectra of CSA/NPC-750 before and after electrochemical 

reduction of N2 at -0.2 V.
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Fig. S10 Chronoamperometric curve and NH3 production efficiency during electrochemical reduction of 

N2 on CSA/NPC-750 at -0.2 V.
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Fig. S11 SEM images of (A) NPC-750 and (B) Co/NPC-750, (C) low and (D) high resolution TEM images 

of Co/NPC-750.
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Fig. S12 (A) XPS survey scan spectra of CSA/NPCs, N 1s XPS spectra of (B) CSA/NPC-750, (C) 

CSA/NPC-850 and (D) CSA/NPC-950.
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Fig. S13 N2-TPD curves of CSA/NPC-750 and NPC-750.
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DFT calculation was conducted on Vienna Ab-initio Simulation Package (VASP) with the projector 

augmented wave (PAW) potentials, the generalized gradient approximation (GGA) parameterized by 

Perdew, Burke and Ernzerhof (PBE) for texchange correlation functional.2,3 The Co single atoms embedded 

N-doped carbon (CSA/NPC) with a 7×7 unit cell was used as model (Fig. S14). Both Co atoms coordinated 

with four N atoms (Co-N4) and pyridinic N were considered in this model. The kinetic energy cutoff was 

set to 400 eV for the plane-wave basis. To eliminate the interaction of periodic images of the system, 

vacuum layer above the CSA/NPC plane was selected to be 20 Å. The model structures are optimized by 

using thresholds for the total energy of 10−4 eV and force of 0.01 eV/Å. The free energy of possible reaction 

pathways for NH3 synthesis was calculated4-6 as follows: ΔG = ΔEDFT + ΔEZPE -TΔS, where ΔEDFT is the 

DFT total energy, ΔEZPE is the zero-point energy, and TΔS is the entropy difference between the initial 

adsorbed state and final state. During the DFT calculation, the H, N2Hx and NHx adsorbed on CSA/NPC 

are optimized by searching all the possible structures and find the lowest energy ones.

Fig. S14 The model of CSA/NPC used for DFT calculation.

2. Supplementary tables
Table S1. The EXAFS fitting results of CSA/NPC-750.

Electrocatalysts Bond type N R 2 ∆E0 (eV)
CSA/NPC-750 Co-N 4.0 1.89 0.0034 -6.7

N is the coordination number, R is the distance between absorber and backscatter atoms, 2 is the Debye-
Waller factor value, ∆E0 is edge-energy shift
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Table S2. Comparison of NH3 synthesis performance between CSA/NPC-750 and electrocatalysts reported 
recently

Electrocatalysts Production rate
(µmol h-1 cm-2)

Efficiency
(%) Conditions References

Au/CeOx-RGO 0.098 10.1% -0.2 V, pH 2 Adv. Mater. 2017, 29, 
1700001

Au nanorod 0.097 8.11% -0.2 V, pH 13 Adv. Mater. 2017, 29, 
1604799

Fe2O3/CNT 0.013 0.18% -1.4 V, pH 7 Angew. Chem. Int. Ed. 
2017, 56, 2699

MoS2 0.29 1.17% -0.5 V, pH 7 Adv. Mater. 2018, 30, 
1800191

Carbon nitride 0.95 11.59% -0.2 V, pH 1 Angew. Chem. Int. Ed. 
2018, 57, 10246

CSA/NPC 0.86 10.5% -0.2 V, pH 7 This work

Table S3. The N/C and Co/C ratios obtained from XPS for CSA/NPC-750 before and after electrochemical 
reduction of N2 at -0.2 V.

N/C ratio Co/N ratio
Before use 0.319 0.0152
After use 0.335 0.0146

XPS is used to quantify CSA/NPC-750 before and after electrochemical reduction of N2 at -0.2 V. As 

shown in Figure S11 and Table S3, the atom ratios of N/C and Co/C are 0.319 and 0.0152 before use. After 

electrochemical reduction of N2 for six cycles (1 h for each cycle), the N/C ratio is 0.335. The slightly 

increased N content could be caused by measurement error and/or adsorbed ammonia. The Co/C ratio is 

0.0146 after use, which can be considered as the same before reaction.
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Table S4. The metal and N contents of CSA/NPCs, NPC-750 and Co/NPC-750

Electrocatalysts Co content Zn content N content

CSA/NPC-750 1.4 wt% 4.3 wt% 20.6 at.%

CSA/NPC-850 1.5 wt% 1.8 wt% 15.3 at.%

CSA/NPC-950 1.8 wt% 0.03 wt% 13.0 at.%

NPC-750 0 4.2 wt% 20.7 at.%

Co/NPC-750 8.2 wt% 4.1 wt% 21.8 at.%

Metal content is measured by inductively coupled plasma atomic emission spectroscopy, N content is 
measured by XPS.
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