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Figure S1. Heat flow from DSC measurements showing the phase transition temperature of Ge1-

xCdxTe (x = 0-0.05).



Figure S2. (a) Room temperature sound velocity and (b) mass fluctuation scattering parameter 
(M), and strain fluctuation scattering parameter (S) of Ge1-xCdxTe (x = 0-0.05). 

Scattering parameter calculations: Callaway suggests that the impurity scattering parameter () 

can be calculated by fitting the lattice thermal conductivity of a disordered compound (L) and 

the lattice thermal conductivity of an ordered pure GeTe (P
L) compound through Eq. 1:
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where u is the disorder scaling parameter, D is the Debye temperature (244 K for pure GeTe), 

 is the average atomic volume,  is the Planck’s constant, and is the average sound velocity ℎ

(2452 m/s for pure GeTe). In the model of Slack1 and Abeles2, considering the disorder 

scattering parameter as a combined value of disorder from both mass and strain field fluctuations 

allows to express  as: = S, where and S are the mass and strain fluctuation 

parameters, respectively, given by
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Here n is the number of different atoms in the lattice (n = 2 in GeTe) and ci is the degeneracy of 

the atomic occupancy (c1 = c2 = 1),  and   are the average atomic mass and radius on the ith 𝑀̅𝑖 𝑟̅𝑖

sublattice, respectively,   is the average relative atomic mass of the compound,  is the 𝑀̿ 𝑓𝑘
𝑖

fractional occupation of the kth atoms on the ith sublattice,1 is the phenomenological adjustable 

parameter,  and   are the atomic mass and radius, respectively, expressed as:𝑀𝑘
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Following the above expressions, a simplified expression for the impurity scattering parameter 

is derived and can be written as:

 .                                                                       
Γ =  

1
4(𝑀̅1

𝑀̿ )2𝑥(1 ‒ 𝑥)[(𝑀1
1 ‒ 𝑀2

1

𝑀̅1
)2 +  𝜀1(𝑟1

1 ‒ 𝑟1
2

𝑟̅1
)2]

(7)

Figure S3. Temperature dependent thermoelectric transport properties for Ge1-ySbyTe (y = 0-

0.10): (a) electrical conductivity, (b) Seebeck coefficient, (c) power factor, (d) total thermal 

conductivity, (e) lattice thermal conductivity and (f) figure of merit, ZT.

Electronic thermal conductivity and Lorenz number of Ge0.97-yCd0.03SbyTe: The electronic 

thermal conductivity is calculated from the Wiedemann-Franz law, e = LT, where L is the 

Lorenz number. L was calculated using the chemical potential, estimated by fitting the 



experimental Seebeck coefficient.    is the measured electrical conductivity and T is the 

absolute temperature. 

Figure S4. (a) Temperature-dependent electronic thermal conductivity of the Ge0.97-yCd0.03SbyTe 

(y = 0-0.10) sample and (b) Lorenz number as a function of temperature of Ge0.97-yCd0.03SbyTe (y 

= 0-0.10). 
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