

Supporting Information

Discordant Nature of Cd in GeTe Enhances Phonon Scattering and Improves Band Convergence for High

Thermoelectric Performance

Evariste Nshimyimana,^a Shiqiang Hao,^b Xianli Su,^{a*} Cheng Zhang,^a Wei Liu,^a Yonggao Yan,^a Ctirad Uher,^d Chris Wolverton,^b Mercouri G. Kanatzidis,^{b,c} and Xinfeng Tang^{a*}

^a *State Key Laboratory of Advanced Technology for Materials Synthesis and Processing*

Wuhan University of Technology, Wuhan 430070, China

^b *Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA*

^c *Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA*

^d *Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA*

Corresponding authors: Xianli Su (suxianli@whut.edu.cn), Xinfeng Tang (tangxf@whut.edu.cn).

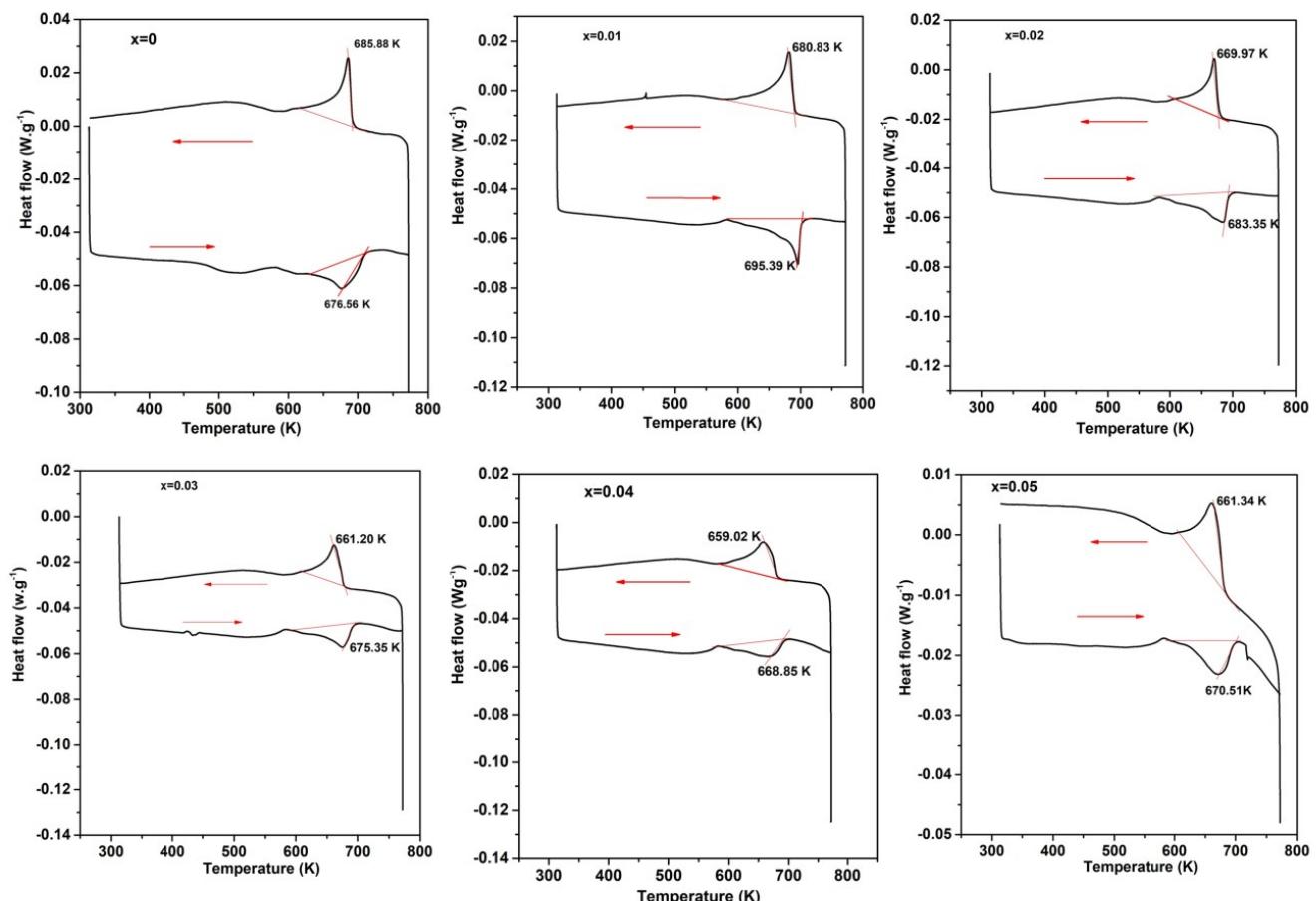


Figure S1. Heat flow from DSC measurements showing the phase transition temperature of $\text{Ge}_{1-x}\text{Cd}_x\text{Te}$ ($x = 0-0.05$).

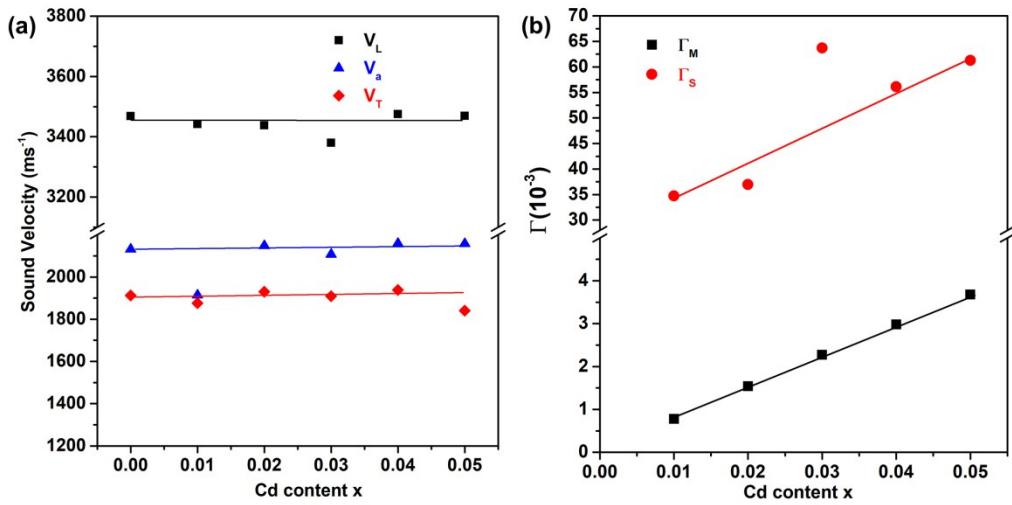


Figure S2. (a) Room temperature sound velocity and (b) mass fluctuation scattering parameter (Γ_M), and strain fluctuation scattering parameter (Γ_S) of $\text{Ge}_{1-x}\text{Cd}_x\text{Te}$ ($x = 0-0.05$).

Scattering parameter calculations: Callaway suggests that the impurity scattering parameter (Γ) can be calculated by fitting the lattice thermal conductivity of a disordered compound (κ_L) and the lattice thermal conductivity of an ordered pure GeTe (κ_L^P) compound through Eq. 1:

$$\frac{\kappa_L}{\kappa_L^P} = \frac{\tan^{-1} u}{u}, \quad u^2 = \frac{\pi^2 \Theta_D \Omega}{v^2} \kappa_L^P \Gamma \quad , \quad (1)$$

where u is the disorder scaling parameter, Θ_D is the Debye temperature (244 K for pure GeTe), Ω is the average atomic volume, h is the Planck's constant, and v is the average sound velocity (2452 m/s for pure GeTe). In the model of Slack¹ and Abeles², considering the disorder scattering parameter as a combined value of disorder from both mass and strain field fluctuations allows to express Γ as: $\Gamma = \Gamma_M + \Gamma_S$, where Γ_M and Γ_S are the mass and strain fluctuation parameters, respectively, given by

$$\Gamma_M = \frac{\sum_{i=1}^n ci \left(\frac{\bar{M}_i}{\bar{M}} \right)^2 f_i^1 f_i^2 \left(\frac{M_i^1 - M_i^2}{M_i} \right)^2}{\sum_{i=1}^n ci}$$

(2)

$$\Gamma_S = \frac{\sum_{i=1}^n ci \left(\frac{\bar{M}_i}{\bar{M}} \right)^2 f_i^1 f_i^2 \varepsilon_1 \left(\frac{r_i^1 - r_i^2}{\bar{r}_i} \right)^2}{\sum_{i=1}^n ci}$$

(3)

Here n is the number of different atoms in the lattice ($n = 2$ in GeTe) and ci is the degeneracy of the atomic occupancy ($c_1 = c_2 = 1$), \bar{M}_i and \bar{r}_i are the average atomic mass and radius on the i^{th} sublattice, respectively, \bar{M} is the average relative atomic mass of the compound, f_i^k is the fractional occupation of the k^{th} atoms on the i^{th} sublattice, ε_1 is the phenomenological adjustable parameter, M_i^k and r_i^k are the atomic mass and radius, respectively, expressed as:

$$M_i^k = \sum_k f_i^k M_i \quad (4)$$

$$r_i^k = \sum_k f_i^k r_i^k \quad (5)$$

$$\bar{M} = \frac{\sum_{i=1}^n c_i \bar{M}_i}{\sum_{i=1}^n c_i}$$

(6)

Following the above expressions, a simplified expression for the impurity scattering parameter Γ is derived and can be written as:

$$\Gamma = \frac{1}{4} \left(\frac{\bar{M}_1}{\bar{M}} \right)^2 x(1-x) \left[\left(\frac{M_1^1 - M_1^2}{\bar{M}_1} \right)^2 + \varepsilon_1 \left(\frac{r_1^1 - r_2^1}{\bar{r}_1} \right)^2 \right]$$

(7)

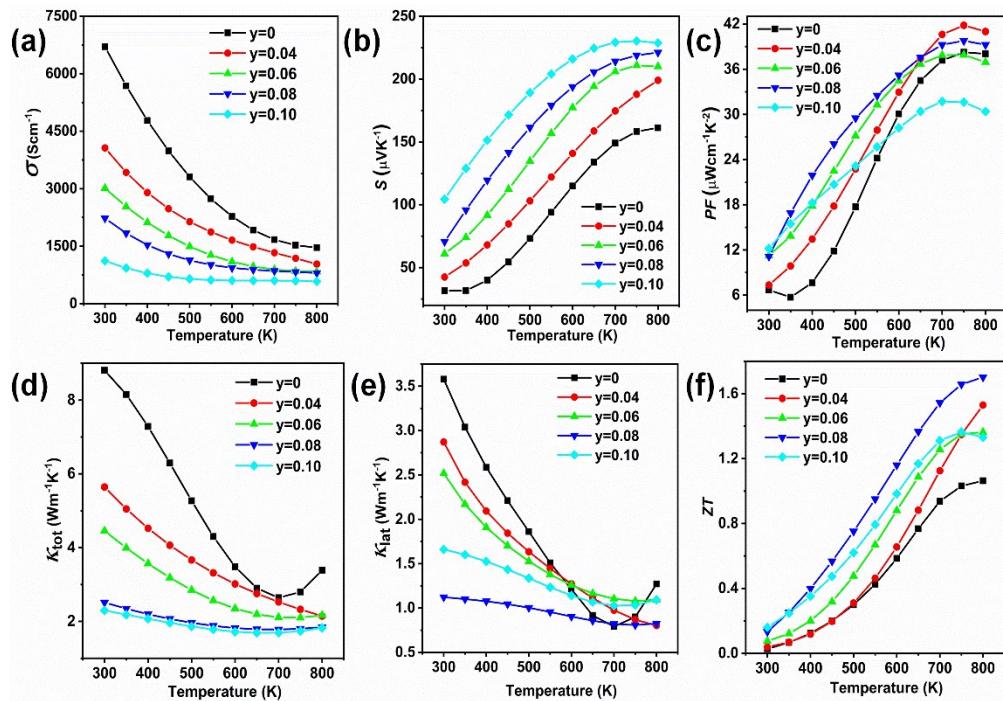


Figure S3. Temperature dependent thermoelectric transport properties for $\text{Ge}_{1-y}\text{Sb}_y\text{Te}$ ($y = 0$ - 0.10): (a) electrical conductivity, (b) Seebeck coefficient, (c) power factor, (d) total thermal conductivity, (e) lattice thermal conductivity and (f) figure of merit, ZT .

Electronic thermal conductivity and Lorenz number of $\text{Ge}_{0.97-y}\text{Cd}_{0.03}\text{Sb}_y\text{Te}$: The electronic thermal conductivity is calculated from the Wiedemann-Franz law, $\kappa_e = L\sigma T$, where L is the Lorenz number. L was calculated using the chemical potential, estimated by fitting the

experimental Seebeck coefficient. σ is the measured electrical conductivity and T is the absolute temperature.

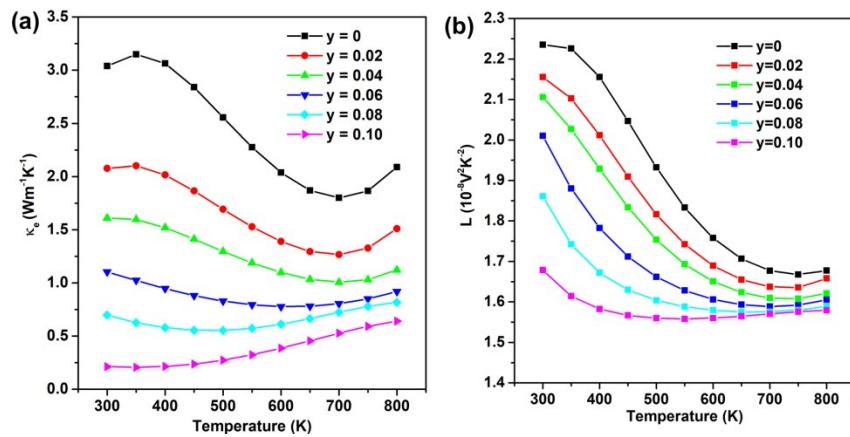


Figure S4. (a) Temperature-dependent electronic thermal conductivity of the $\text{Ge}_{0.97-y}\text{Cd}_{0.03}\text{Sb}_y\text{Te}$ ($y = 0-0.10$) sample and (b) Lorenz number as a function of temperature of $\text{Ge}_{0.97-y}\text{Cd}_{0.03}\text{Sb}_y\text{Te}$ ($y = 0-0.10$).

References

- (1) Slack, G. A. Effect of isotopes on low-temperature thermal conductivity. *Physical Review* **1957**, *105* (3), 829.
- (2) Abeles, B. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. *Physical Review* **1963**, *131* (5), 1906.