Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Discordant Nature of Cd in GeTe Enhances Phonon

Scattering and Improves Band Convergence for High

Thermoelectric Performance

Evariste Nshimyimana,^a Shiqiang Hao,^b Xianli Su,^{a*} Cheng Zhang,^a Wei Liu,^a Yonggao Yan,^a

Ctirad Uher,^d Chris Wolverton,^b Mercouri G. Kanatzidis,^{b,c} and Xinfeng Tang^{a*}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing

Wuhan University of Technology, Wuhan 430070, China

^b Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois

60208, USA

^c Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA

^d Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

Corresponding authors: Xianli Su (suxianli@whut.edu.cn), Xinfeng Tang (tangxf@whut.edu.cn).

Figure S1. Heat flow from DSC measurements showing the phase transition temperature of Ge₁₋ $_x$ Cd_xTe (x = 0-0.05).

Figure S2. (a) Room temperature sound velocity and (b) mass fluctuation scattering parameter ($\Gamma_{\rm M}$), and strain fluctuation scattering parameter ($\Gamma_{\rm S}$) of Ge_{1-x}Cd_xTe (x = 0-0.05).

Scattering parameter calculations: Callaway suggests that the impurity scattering parameter (Γ) can be calculated by fitting the lattice thermal conductivity of a disordered compound (κ_L) and the lattice thermal conductivity of an ordered pure GeTe (κ^p_L) compound through Eq. 1:

$$\frac{\kappa_L}{\kappa_L^P} = \frac{\tan^{-1} u}{u}, \ u^2 = \frac{\pi^2 \Theta_D \Omega}{\nu^2} \kappa_L^P \Gamma$$

where *u* is the disorder scaling parameter, Θ_D is the Debye temperature (244 K for pure GeTe), Ω is the average atomic volume, *h* is the Planck's constant, and v is the average sound velocity (2452 m/s for pure GeTe). In the model of Slack¹ and Abeles², considering the disorder scattering parameter as a combined value of disorder from both mass and strain field fluctuations allows to express Γ as: $\Gamma = \Gamma_M + \Gamma_S$, where Γ_M and Γ_S are the mass and strain fluctuation parameters, respectively, given by

Here *n* is the number of different atoms in the lattice (n = 2 in GeTe) and ci is the degeneracy of the atomic occupancy ($c_1 = c_2 = 1$), \overline{M}_i and \overline{r}_i are the average atomic mass and radius on the *i*th sublattice, respectively, \overline{M} is the average relative atomic mass of the compound, f_i^k is the fractional occupation of the *k*th atoms on the *i*th sublattice, ε_1 is the phenomenological adjustable parameter, M_i^k and r_i^k are the atomic mass and radius, respectively, expressed as:

$$M_i^k = \sum_k f_i^k M_i^k \tag{4}$$

$$r_{i}^{k} = \sum_{k} f_{i}^{k} r_{i}^{k}$$

$$\bar{M} = \frac{\sum_{i=1}^{n} C_{i} \bar{M}_{i}}{\prod_{i=1}^{n} C_{i} \bar{M}_{i}}$$
(5)

(6)

Following the above expressions, a simplified expression for the impurity scattering parameter

Γis derived and can be written as:

$$\Gamma = \frac{1}{4} \left(\frac{\bar{M}_1}{\bar{M}} \right)^2 x (1-x) \left[\left(\frac{M_1^1 - M_1^2}{\bar{M}_1} \right)^2 + \varepsilon_1 \left(\frac{r_1^1 - r_2^1}{\bar{r}_1} \right)^2 \right]$$
(7)

Figure S3. Temperature dependent thermoelectric transport properties for $\text{Ge}_{1-y}\text{Sb}_y\text{Te}$ (y = 0-0.10): (a) electrical conductivity, (b) Seebeck coefficient, (c) power factor, (d) total thermal conductivity, (e) lattice thermal conductivity and (f) figure of merit, *ZT*.

Electronic thermal conductivity and Lorenz number of $Ge_{0.97-y}Cd_{0.03}Sb_yTe$: The electronic thermal conductivity is calculated from the Wiedemann-Franz law, $\kappa_e = L\sigma T$, where *L* is the Lorenz number. L was calculated using the chemical potential, estimated by fitting the

experimental Seebeck coefficient. σ is the measured electrical conductivity and *T* is the absolute temperature.

Figure S4. (a) Temperature-dependent electronic thermal conductivity of the $Ge_{0.97-y}Cd_{0.03}Sb_yTe$ (y = 0-0.10) sample and (b) Lorenz number as a function of temperature of $Ge_{0.97-y}Cd_{0.03}Sb_yTe$ (y = 0-0.10).

References

(1) Slack, G. A. Effect of isotopes on low-temperature thermal conductivity. *Physical Review* **1957**, *105* (3), 829.

(2) Abeles, B. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. *Physical Review* **1963**, *131* (5), 1906.