Supplementary Information for the article

Anion-exchange phase control of manganese sulfide

for oxygen evolution reactions

Rahul B. Pujari^a, Girish S. Gund^b, Swati J. Patil^a, Ho Seok Park^b, Dong-Weon Lee^{*ac}

^aMEMS and Nanotechnology Laboratory, School of Mechanical System Engineering, Chonnam

National University, Gwangju, 61186, Republic of Korea,

^bSchool of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-

gu, Suwon 440-746, Republic of Korea

^cCenter for Next-generation Sensor Research and Development, Chonnam National University,

Gwangju, 61186, Republic of Korea

CORRESPONDING AUTHOR FOOTNOTE*

Prof. Dong-Weon Lee

E-mail address: mems@jnu.ac.kr

Telephone: +8262 530 1684

Sr.	Material	Crystal	Lattice constant			Volume of	Ionic radii	Number of	Total volume	PF
no.		structure		(Å)		unit cell	(Å)	ions per unit	occupied by ions in	
			a	b	c	(Å ³)		cell	unit cell (Å ³)	
1.	MnCO ₃	Rhombohedral	5.84	5.84	5.84	99.99	$Mn^{+2} = 0.81$	$Mn^{+2} = 2$	54.92	0.55
		$\alpha = \beta = \gamma =$					$C^{+4} = 0.3$	C ⁺⁴ = 2		
		47.77°					$O^{-2} = 1.26$	$O^{-2} = 6$		
2.	MnS ₂	Cubic	6.11	6.11	6.11	227.98	$Mn^{+4} = 0.67,$	$Mn^{+4} = 4$	169.58	0.74
		$\alpha = \beta = \gamma = 90^{\circ}$					$S^{-2} = 1.7$	$S^{-2} = 8$		
3.	γ-MnS	Wurtzite	3.97	3.97	3.97	88.05	$Mn^{+2} = 0.81,$	$Mn^{+2} = 3$	68.38	0.77
		$\alpha = \beta = 90^\circ, \gamma$					$S^{-2} = 1.7$	$S^{-2} = 3$		
		= 120°								
4.	α-MnS	Rock salt	5.24	5.24	5.24	143.87	$Mn^{+2} = 0.81,$	$Mn^{+2} = 4$	91.17	0.63
		$\alpha = \beta = \gamma = 90^{\circ}$					$S^{-2} = 1.7$	$S^{-2} = 4$		

Table S1: PF calculations for rhombohedral MnCO₃ and all polymorphs of manganese sulfide prepared in the present study.

Figure S1: XRD patterns of manganese sulfide thin films prepared at different temperatures via anion exchange of $MnCO_3$ with the same mass ratio (1:1) of $MnCO_3$ to Na_2S .

Figure S2: XRD patterns of manganese sulfide samples prepared via the anion-exchange chemical reaction between $MnCO_3$ and Na_2S precursors with different mass ratios at a hydrothermal temperature of 363 K.

Figure S3: XRD patterns of manganese sulfide prepared at 303 and 453 K via the anion-exchange reaction with MnCO₃:Na₂S mass ratio of 1:5.

Figure S4: Comparative XPS survey profiles of the MnS_2 , γ -MnS, and α -MnS phases of manganese sulfide.

Figure S5: FE-SEM images of manganese sulfide thin films prepared via the anion-exchange reaction with MnCO₃:Na₂S mass ratio of 1:1 at different temperatures: **(a, b)** 333 K, **(c, d)** 393 K, and **(e, f)** 423 K.

Figure S6: FE-SEM images of manganese sulfide thin films prepared via the anion-exchange reaction with MnCO₃:Na₂S mass ratio of 1:5 at different temperatures: (**a**, **b**) 303 K (**c**, **d**) 363 K, and (**e**, **f**) 453 K.

Figure S7: Crystal structure models of MnCO₃ and different phases of manganese sulfide.

Figure S8: Cyclic voltammetry curves of (a) $MnCO_3$ (b) MnS_2 (c) γ -MnS, and (d) α -MnS catalysts obtained within non-faradaic region of 1.00 to 1.20 V/RHE in 1 M KOH.

Figure S9: Current density versus scan rate plots of different electrodes for measurement of electrochemical active surface area.