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Figure S1. SEM image of ZnS@WCF 
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Figure S2. SEM images of pure WCF 

Table S1. Synthesis details of ZnS@WCF. 

Samples RF (g/ml) TPOS (ml) NH3·H2O Water/ethanol (ml/ml) 

A 0.10-0.14 2.5 3 10/70 

B 0.05-0.07 2.5 3 10/70 

C 0.0125-0.0175 2.5 3 10/70 

D 0.025-0.035 5 3 10/70 

E 0.025-0.035 1.25 3 10/70 

F 0.025-0.035 2.5 3 20/60 

G 0.025-0.035 2.5 1.5 10/70 

H 0.025-0.035 2.5 6 10/70 

I 0.025-0.035 2.5 12 10/70 

J Same to the synthesis process of ZnS@WCF, but TPOS and RF were added simultaneously 

ZnS@WCF 0.025-0.035 2.5 3 10/70 
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Figure S3. SEM images of different samples fabricated throughout the process mentioned in Table S2. (a)-(j) are 

corresponded to the sample A-J repectively. 

 
Figure S4. XRD pattern of the pure WCF sample. 
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Figure S5. Raman spectra of ZnS@WCF 

 

Figure S6. High resolution XPS spectra of C 1s in ZnS@WCF 
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Figure S7. N2 sorption isotherms and pore distribution of (a) ZnS nanospheres and (b) WCF 
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(b) 
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Table S2. SBET and VP values of samples. 

 

Theoretical equations of the current-time transients of four classic electrochemical 

deposition models (2D instantaneous nucleation and 2D progressive nucleation are 

based on Bewick, Fleischman, and Thirsk models; 3D instantaneous nucleation and 3D 

progressive nucleation are based on Scharifker–Hills models):47 
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Samples ZnS nanospheres WCF ZnS@WCF 

SBET (m2·g-1) 12.532  768.05 446.95 

VP (m3·g-1) 0.0434  1.943 0.7389 

Pore Size (nm) 1.21 1.66 1.64 
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Figure S8. TGA curve of CB/S hybrid under N2 atmosphere. 

 

Figure S9. The initial five CV curves of LS-ZnS@WCF at a scan rate of 0.1 mV·s-1 
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Figure S10. (a) CV curves at different scan rates ranging from 0.1 to 5 mV s −1; (b) The plots of log ip as a function of 

log v. 

As we can see from the CV curves, the polarization and the width of current peaks increased with 

the scan rate. The power law formulas ip = a·vb and log ip = loga + blogv can be employed for the 

analysis of the CV data obtained. Ip is the current of the oxidation peak and the reduction peaks (O1, 

R1 and R2). v represents the scan rate. Two well-defined conditions should be introduced: i) b = 1.0 is 

representative of surface-capacitive behavior and ii) b = 0.5 suggests a faradaic intercalation process, 

which is Li+ diffusion controlled. b is equal to the slope of plots in the right fig. We found that the 

values of b are in the range of 0.48-0.6, indicating the Li+ diffusion-controlled process during the 

electrochemical reaction. S1,S2 
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Figure S11. Charge-discharge profiles of L-S cells based on different type of interlayers at 2 C.  

 

Figure S12. Cycling performance of ZnS@WCF hybrid without the addition of CB/S cathode. 
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Figure S13. Charge-discharge profiles of L-S cells based on different type of interlayers after 300 cycles at 0.5 C. 

 

Figure S14. (a),(b) SEM images of ZnS@WCF coated separator with different thickness; (c) Cycling performance of 

LS-ZnS@WCF based on different interlayer thickness at 0.5 C. 
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Figure S15. Cycling performance of LS-ZnS@WCF with a high areal sulfur loading of 3.5 mg·cm-2 at 0.1 C. 
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Table S2. Comparison of electrochemical performances of the other hybrid interlayer materials in recent reported 

literatures. 

Materials Current density   Cycle number   Capacity decay rate (%)  Rate performance Ref 

SnO2-rGO 1 C  200 0.15 734 mAh g-1, 2C 17 

Laponite-CB 0.2 C  500 0.06 758 mAh g-1, 2C [S3] 

MoO3-CNTs 1 C  400 0.12 764 mAh g-1, 2C [S4] 

Co/mSiO2-NCNTs 1 C  250 0.09 552 mAh g-1, 5C [S5] 

HEMO-KB 0.5 C 600 0.077 634 mAh g-1, 1C [S6] 

PDA-rGO 0.1 100 0.28 460 mAh g-1, 2C [S7] 

ZnS@WCF 1 C  600 0.045 807 mAh g-1, 2C This work  
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