Single crystal polyoxoniobate as a precursor to form uniformly distributed NbO/Cu nanocrystalline@N-doped carbon loaded onto reduced graphene oxide for high rate and high capacity Li/Na Storage

Peng Huang,^{‡a} Min Huang,^{‡a} Hai Hu,^a Yuan Zhong,^a Chao Lai,^a and Shulei Chou*^b

^{a.} Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou, 221116, PR China.

^{b.} Institute for Superconducting and Electronic Materials, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia. E-mail: shulei@uow.edu.au.

Figure S1. SEM image of NbO/Cu@NC-RGO.

Figure S2. High resolution XPS spectra of (a) C 1s, (b) N, (c) O1s, (d) Cu 2p, and (e) Nb 3d of NbO/Cu@NC-RGO, respectively.

Figure S3. The TG curve of $K_5[Cu(en)_2]_{15.5}[(Nb_{24}O_{72}H_6)_2] \cdot 94.5H_2O$. $K_5[Cu(en)_2]_{15.5}[(Nb_{24}O_{72}H_6)_2] \cdot 94.5H_2O$ exhibits two weight loss steps in the temperature range 30-800 °C, the first weight loss is 15.17% (theoretical value 14.76%) in the temperature range 30-200°C, corresponding to the loss of noncoordinated and coordinated water molecules. And the second weight loss is 17.32 % in the temperature range 200-400°C, corresponding to the loss of ethanediamine molecules, which is consistent with the theoretical value 16.17%.

Figure S4. The IR spectrum of $K_5[Cu(en)_2]_{15.5}[(Nb_{24}O_{72}H_6)_2]\cdot94.5H_2O$. The characteristic peaks at 1110, 1040, 975, 874, 650 and 526 cm⁻¹ are assigned to the v(Nb–O_t) and v(Nb–O–Nb) stretches. The v(Nb–Ob–Nb)vibration frequencies in the region 500–900 cm⁻¹ show evident red shifts compared with those of the precursor $K_7HNb_6O_{19}\cdot13H_2O$, suggesting that the Cu–O interactions between Cu and O of polyoxoniobate.

Table S1. Comparison the electrochemical performance of our samples with other niobium oxide anode materials for lithium-ion batteries.

Sample	Capacity (mAh g ⁻¹)	Rate capability	Ref.
NbO/Cu@NC-RGO	580 mAh g ⁻¹ at 0.1 A g ⁻¹	342 mAh g^{-1} at 0.5 A g^{-1}	This work
NbO-BM	380 mAh g ⁻¹ at 0.1C	216 mAh g ⁻¹ at 0.5C	1
NbO	293 mAh g ⁻¹ at 0.1C	162 mAh g ⁻¹ at 0.5C	1
Nb ₂ O ₅ Nanosheets	$\begin{array}{c} 184 \text{ mAh } g^{-1} \text{ at } 0.2 \\ \text{A } g^{-1} \end{array}$	90 mAh g^{-1} at 1 A g^{-1}	2
Nb ₂ O ₅ Nanoparticles	145 mAh g^{-1} at 0.5 A g^{-1}	120 mAh g^{-1} at 1 A g^{-1}	3
T-Nb ₂ O ₅ /Graphene	145 mAh g^{-1} at 0.5 A g^{-1}	$115 \text{ mAh } \text{g}^{-1} \text{ at } 2 \text{ A} \text{g}^{-1} \text{g}^{-1}$	4
Ag-1D T-Nb ₂ O ₅	179 mAh g^{-1} at 0.5 A g^{-1}	103.6 mAh g^{-1} at 5 A g^{-1}	5
Bulk Ti ₂ Nb ₁₀ O ₂₉	238 mAh g ⁻¹ at 0.792 A g ⁻¹	168 mAh g ⁻¹ at 3.96 A g ⁻¹	6
Ti ₂ Nb ₁₀ O ₂₉ /rGo	261 mAh g ⁻¹ at 0.03 A g ⁻¹	$\begin{array}{c} 165 \text{ mAh } g^{-1} \text{ at } 0.5 \\ \text{A } g^{-1} \end{array}$	7
Porous Li ₄ Ti ₅ O ₁₂	168.1 mAh g ⁻¹ at 0.2 C	116 mAh g ⁻¹ at 20 C	8

Sample	Capacity (mAh g ⁻¹)	Rate capability	Ref.
NbO/Cu@NC-RGO	203 mAh g^{-1} at 0.05 A g^{-1}	$\begin{array}{c} 119 \text{ mAh } g^{-1} \text{ at } 0.8 \\ \text{A } g^{-1} \end{array}$	This work
Porous Nb ₂ O ₅ film	185 mAh g ⁻¹ at 0.1 A g ⁻¹	84 mAh g^{-1} at 2 A g^{-1}	9
Nb ₂ O ₅ nanosheet	145 mAh g^{-1} at 0.05 A g^{-1}	$\begin{array}{c} 47 \text{ mAh } \text{g}^{-1} \text{ at } 1 \text{ A} \\ \text{g}^{-1} \end{array}$	10
Porous Nb ₂ O ₅ /C	$180 \text{ mAh } g^{-1} \text{ at} \\ 0.05 \text{ A } g^{-1}$	71 mAh g-1 at 1 A g-1	11
Nb ₂ O ₅ /Graphene	220 mAh g^{-1} at 0.05 A g^{-1}	$102 \text{ mAh } g^{-1} \text{ at } 2 \text{ A} g^{-1}$	12
T-Nb ₂ O ₅ /CNFs	$150 \text{ mAh } \text{g}^{-1} \text{ at } 1 \text{ A} \text{g}^{-1}$	97 mAh g^{-1} at 8 A g^{-1}	13
Nb ₂ O ₅ @C/rGO-50	120 mAh g^{-1} at 1.25 A g^{-1}	109 mA h g ⁻¹ at 3 A g ⁻¹	14

Table S2. Comparison the electrochemical performance of our samples with other niobium oxide anode materials for sodium-ion batteries.

Reference

1. J. Li, W. W. Liu, H. M. Zhou, Z. Z. Liu, B. R. Chen, W. J. Sun, *Rare Met.* 2018, 37, 118.

2. M. Liu, C. Yan, Y. Zhang, Sci. Rep., 2015, 8, 8326.

3. M. Lübke, A. Sumboja, I. D. Johnson, D. J. L. Brett, P. R. Shearing, Z. L. Liu, J. A. Darr, *Electrochim. Acta*, **2016**, *192*, 363.

4. P. Arunkumar, A. G. Ashish, B. Babu, S. Sarang, A. Suresh, C. H. Sharma, M. Thalakulam, M. M. Shaijumon, *RSC Adv.* **2015**, *5*, 59997.

5. J. Y. Cheong, D. Y. Youn, C. Kim, J. W. Jung, A. Ogata, J. G. Bae, II-D. Kim, *Electrochimica Acta*, **2018**, *269*, 388.

6. Q. Cheng, J. Liang, Y. Zhu, L. Si, C. Guo, Y. Qian, J. Mater. Chem. A, 2014, 2, 17258.

7. W. L. Wang, B. Y. Oh, J. Y. Park, H. Ki, J. Jang, G. Y. Lee, H. B. Gu, M. H. Ham, *J. Power. Sources*, **2015**, *300*, 272.

8. L. Shen, C. Yuan, H. Luo, X. Zhang, K. Xu, Y. Xia, J. Mater. Chem., 2010, 20, 6998.

9. J. Ni, W. Wang, C. Wu, H. Liang, J. Maier, Y. Yu, and L. Li, *Adv. Mater.* 2017, 29, 1605607.

10. H. Li, Y. Zhu, S. Dong, L. Shen, Z. Chen, X. Zhang, G. Yu, *Chem. Mater.* 2016, 28, 5753.

11. H. Kim, E. Lim, C. Jo, G. Yoon, J. Hwang, S. Jeong, J. Lee, K. Kang, *Nano Energy* **2015**, *16*, 62.

12. L. Wang, X. Bi, S. Yang, Adv. Mater. 2016, 28, 7672.

13. L. Yang, Y. E. Zhu, J. Sheng, F. Li, B. Tang, Y. Zhang, and Z. Zhou, *Small* **2017**, *13*, 1702588.

14. E. Lim, C. Jo, M. S. Kim, M.-H. Kim, J. Chun, H. Kim, J. Park, K. C. Roh, K. Kang, S. Yoon, J. Lee, *Adv. Funct. Mater.* **2016**, *26*, 3711.