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Theoretical methods

Computational details and modeling

The density-functional theory (DFT) calculations in this work were performed using
the Vienna Ab-initio Simulation Package (VASP) ' 2. The Blochl’s all-electron-like
projector augmented plane wave (PAW) method was used to describe the interactions
between ion cores and valence electrons * 4. The electron exchange-correlation
interaction was treated using the generalized gradient approximation (GGA) with the
Perdew-Burke-Ernzerhof (PBE) functional.

A Hubbard-U correction (DFT+U method) was applied in the simulations, in order to
improve the on-site Coulomb interactions for CosHAB,. In the present work, the value
of U is 0.4 and 0.72 for Co, respectively. The plane waves with a cutoff energy of 500
eV were used, and the 4x4x1 Monkhorst—Pack grid k-points were employed to sample
the Brillouin zone integration. The structures were optimized until the energy and the
force were converged to 1.0x10 eV/atom and 0.02 eV/A, respectively. A vacuum
space as large as 15 A was used along the ¢ direction normal to the catalyst surface to
avoid periodic interactions.

OER reaction pathways

The general OER mechanism is the four electron associative pathway as described as
follows:

OH™ + *—>0H" + e~

(SD)
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Derivation of free energy
The free energies were calculated from total energies using Eq. (S5).
AG;=AE; + AZPE; - TAS; (S5)
Where i =1, 2, 3, 4 corresponds to each step in OER. AE is the reaction energy, AZPE
is the change of zero-point energy, T (298.15 K) is temperature, and AS is the difference
in entropy. The zero-point energies were calculated from the vibration frequencies. The
entropies were taken from standard tables for gas-phase molecules.
Free energy diagram (FED) and overpotential (1)
The AG value of the potential-determining step (G°FR) in OER pathway was
determined by Eq. S6:
GFR = max[AG ,AG,AG,5,AG,)° (S6)
The theoretical overpotential at standard conditions was calculated by Eq. (S7):

nOER = (GOER/e) -1.23V (S7)
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Figure S1. (a)XRD pattern and (b) IR spectra of HAB.

Figure S2 High resolution TEM image and selected-area electron diffraction of Co-

HAB-NSs-2.
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Figure S3. (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution

of Co-HAB-NSs and Bulk Co-HAB.
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Figure S4. XPS spectrum of Co-HAB-NSs.
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Figure S5 XPS spectra of Co 2p for Co-HAB-NP, Co-HAB-S and Co-HAB-HN:S.
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Figure S6. SEM images of Co-HAB-NSs, Co-HAB-NSs-2, Bulk Co-HAB and Co-
HAB-C.

Co-HAB-NSs possesses much thinner nanosheets than Co-HAB-NSs-2 and presents a
flower-like structure in which there are many gaps, whereas Co-HAB-NSs-2 displays
a vertically aligned nanosheets array covering the whole plane with few space. Co-

HAB-C displays a loose network than its procurer bulk Co-HAB.



Figure S7. TEM images of (a) Co-HAB-NSs and (b) Co-HAB-NSs-2.
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Figure S8. EIS curves of Co-HAB-NSs, Co-HAB-NSs-2, Bulk Co-HAB and Co-HAB-

C.
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Figure S9. CV curves and double layer capacitance of Co-HAB-NSs, Co-HAB-NSs-2,

Bulk Co-HAB and Co-HAB-C.
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Figure S10. XPS spectra of (a) N 1s and (b) survey spectra for Co-HAB-UNs after long

time electrolysis.
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Figure S11. Free energy diagram of OER on Co-HAB and RuO, (110) surfaces. (U =

0.72 V)
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Figure S12 XRD patterns of NH,OH-first and NH,OH-final.



Table 1 Selected summary of the OER performance of recently reported Co-based

electrocatalysts.
Catalysts Electrolytes Substra  Overpotential (mV)  Tafel Ref.
te at specific current slope (mV
density dec!)
CoPi 0.1 M KPi ITO 410@1 mA cm™ 62 3
CoCo-LDH 1 M KOH GCE 350@10 mA cm 45 6
Co0304 1 M KOH Au 400@10 mA cm™ 49 7
CoSe; ultrathin 0.1 M KOH GCE 320@10 mA cm 44 8
nanosheets
NiCo/NG 1 M KOH GCE ~340@20 mA cm?  ~111 ?
Co—MOF nanosheets 1 M KOH GCE 263@10 mA cm™ 74 10
CoP/C 0.1 M KOH GCE 360@10 mA cm™ 66 1
a-Co(OH),-DS 1 M KOH GCE 415@10 mA cm™ 55 12
Co(POs), 0.1 M GCE 440@8 mA cm 74.1 13
phosphate
crumpled graphene CoO 1 M KOH GCE 340@10 mA cm™ 71 14
NiCo DH 0.IMKOH Au 500@1 mA cm= — 15
Co-HAB ultrathin 1M KOH GCE 310@10 mA cm™ 56 This
nanosheets work
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