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Theoretical methods

Computational details and modeling

The density-functional theory (DFT) calculations in this work were performed using 

the Vienna Ab-initio Simulation Package (VASP) 1, 2. The Blöchl’s all-electron-like 

projector augmented plane wave (PAW) method was used to describe the interactions 

between ion cores and valence electrons 3, 4. The electron exchange-correlation 

interaction was treated using the generalized gradient approximation (GGA) with the 

Perdew-Burke-Ernzerhof (PBE) functional.

A Hubbard-U correction (DFT+U method) was applied in the simulations, in order to 

improve the on-site Coulomb interactions for Co3HAB2. In the present work, the value 

of U is 0.4 and 0.72 for Co, respectively. The plane waves with a cutoff energy of 500 

eV were used, and the 4×4×1 Monkhorst–Pack grid k-points were employed to sample 

the Brillouin zone integration. The structures were optimized until the energy and the 

force were converged to 1.0×10-5 eV/atom and 0.02 eV/Å, respectively. A vacuum 

space as large as 15 Å was used along the c direction normal to the catalyst surface to 

avoid periodic interactions.

OER reaction pathways

The general OER mechanism is the four electron associative pathway as described as 

follows:

𝑂𝐻 ‒ + ∗ →𝑂𝐻 ∗ + 𝑒 ‒

(S1)

(S2)𝑂𝐻 ∗ + 𝑂𝐻 ‒ →𝑂 ∗ + 𝐻2𝑂(𝑙) + 𝑒 ‒   



𝑂 ∗ + 𝑂𝐻 ‒ →𝑂𝑂𝐻 ∗ + 𝑒 ‒

(S3)

𝑂𝑂𝐻 ∗ + 𝑂𝐻 ‒ → ∗ + 𝑂2 + 𝐻2𝑂(𝑙) + 𝑒 ‒

(S4)

Derivation of free energy

The free energies were calculated from total energies using Eq. (S5).

(S5) ∆𝐺𝑖 = ∆𝐸𝑖 + ∆𝑍𝑃𝐸𝑖 ‒ 𝑇∆𝑆𝑖

Where i = 1, 2, 3, 4 corresponds to each step in OER. ∆E is the reaction energy, ∆ZPE 

is the change of zero-point energy, T (298.15 K) is temperature, and ∆S is the difference 

in entropy. The zero-point energies were calculated from the vibration frequencies. The 

entropies were taken from standard tables for gas-phase molecules.

Free energy diagram (FED) and overpotential (η)

The ∆G value of the potential-determining step (GOER) in OER pathway was 

determined by Eq. S6:

(S6)𝐺𝑂𝐸𝑅 = 𝑚𝑎𝑥[∆𝐺1,∆𝐺2,∆𝐺3,∆𝐺4]0

The theoretical overpotential at standard conditions was calculated by Eq. (S7):

(S7)𝜂𝑂𝐸𝑅 = (𝐺𝑂𝐸𝑅/𝑒) ‒ 1.23𝑉



Figure S1. (a)XRD pattern and (b) IR spectra of HAB.

Figure S2 High resolution TEM image and selected-area electron diffraction of Co-

HAB-NSs-2.



Figure S3. (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution 

of Co-HAB-NSs and Bulk Co-HAB.

Figure S4. XPS spectrum of Co-HAB-NSs.



Figure S5 XPS spectra of Co 2p for Co-HAB-NP, Co-HAB-S and Co-HAB-HNs.



Figure S6. SEM images of Co-HAB-NSs, Co-HAB-NSs-2, Bulk Co-HAB and Co-

HAB-C.

Co-HAB-NSs possesses much thinner nanosheets than Co-HAB-NSs-2 and presents a 

flower-like structure in which there are many gaps, whereas Co-HAB-NSs-2 displays 

a vertically aligned nanosheets array covering the whole plane with few space. Co-

HAB-C displays a loose network than its procurer bulk Co-HAB.



Figure S7. TEM images of (a) Co-HAB-NSs and (b) Co-HAB-NSs-2.

Figure S8. EIS curves of Co-HAB-NSs, Co-HAB-NSs-2, Bulk Co-HAB and Co-HAB-

C.



Figure S9. CV curves and double layer capacitance of Co-HAB-NSs, Co-HAB-NSs-2, 

Bulk Co-HAB and Co-HAB-C.



Figure S10. XPS spectra of (a) N 1s and (b) survey spectra for Co-HAB-UNs after long 

time electrolysis. 

Figure S11. Free energy diagram of OER on Co-HAB and RuO2 (110) surfaces. (U = 

0.72 V)

Figure S12 XRD patterns of NH4OH-first and NH4OH-final.



Table 1 Selected summary of the OER performance of recently reported Co-based 

electrocatalysts.

Reference 

Catalysts Electrolytes Substra

te

Overpotential (mV) 

at specific current 

density 

Tafel 

slope (mV 

dec-1)

Ref.

CoPi 0.1 M KPi ITO 410@1 mA cm-2 62 5

CoCo-LDH 1 M KOH GCE 350@10 mA cm-2 45 6

Co3O4 1 M KOH Au 400@10 mA cm-2 49 7

CoSe2 ultrathin 

nanosheets

0.1 M KOH GCE 320@10 mA cm-2 44 8

NiCo/NG 1 M KOH GCE ~340@20 mA cm-2 ~111 9

Co–MOF nanosheets 1 M KOH GCE 263@10 mA cm-2 74 10

CoP/C 0.1 M KOH GCE 360@10 mA cm-2 66 11

α-Co(OH)2-DS 1 M KOH GCE 415@10 mA cm-2 55 12

Co(PO3)2 0.1 M 

phosphate

GCE 440@8 mA cm-2 74.1 13

crumpled graphene CoO 1 M KOH GCE 340@10 mA cm-2 71 14

NiCo DH 0.1 M KOH Au 500@1 mA cm-2 — 15

Co-HAB ultrathin 

nanosheets

1 M KOH GCE 310@10 mA cm-2 56 This 

work
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