Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

MXene Supported $Co_x A_y$ (A = OH, P, Se)

Electrocatalysts for Overall Water Splitting:

Unveiling the Role of Anions on Intrinsic Activity and Stability

N. Clament Sagaya Selvam^a, Jooyoung Lee^b, Gwan H. Choi^a, Min Jun Oh^a, Shiyu Xu^a,

Byungkwon Lim^b, and Pil J. Yoo^a*

^aSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea

^bSchool of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU) Suwon 16419, Republic of Korea

* E-mail: pjyoo@skku.edu

List of Figures

Fig. S1. XRD pattern of the Ti_3AlC_2 phase and the $Ti_3C_2T_x$ MXene phase.

Fig. S2. SEM image of Co(OH)F/MXene precursor, bare Co(OH)F, bare CoP, and bare Co₇Se₈.

Fig. S3. N₂ adsorption-desorption isotherm of various catalysts.

Fig. S4. XRD pattern of Co(OH)F/MXene, CoP/MXene, and Co₇Se₈/MXene.

Fig. S5. Mass activity graph for various catalysts.

Fig. S6. Cyclic voltammograms measured in non-Faradaic region of the voltammogram at different scan rate for different catalysts in 1 M KOH.

Fig. S7. Nyquist plots for various catalysts.

Fig. S8, S9, and S10. TEM image, mapping images, and EDX spectrum for CoP/MXene (Post-OER sample), Co₇Se₈/MXene (Post-OER sample), bare CoP and bare Co₇Se₈.

Fig. S11. Comparison between CoP/MXene, Co₇Se₈/MXene and Co(OH)F/MXene catalysts after OER catalysis for 10 h: OER polarization curves and Nyquist plots for various catalysts.

List of Tables

Table S1. A comparison of CoP/MXene OER performance with latest reported OER electrocatalysts in alkaline medium.

Table S2. Summary of the OER performance, C_{dl}, ECSA and RF for different electrocatalysts measured in 1 M KOH.

 Table S3. Summary of impedance parameters for various catalysts.

Table S4.A comparison of CoP/MXene HER performance with recently reported electrocatalysts in alkaline medium.

Table S5. Comparison of two electrode water splitting cell voltage of CoP/MXene with recently reported bifunctional electrocatalysts in alkaline medium.

Table S6. Summary of impedance parameters for various catalysts.

Standartd practices followed in the experimental evaluation of electrocatalytic activity:

The electrocatalytic performance of the as-prepared catalysts was examined by using a standard three-electrode system in 1 mol L^{-1} KOH solution (free from impurities).

1. LSV Measurements:

The given LSV data for every sample were measured after running 10 consecutive CV cycles (0.9 to 1.7 V vs RHE at the scane rate of 5 mV sec⁻¹).

2. Overpotenial:

Three duplicate electrodes were prepared for every sample and meansured the LSV to calculate the overpotentials with error analysis. The overpotential at 10 mA cm⁻² current density with iR compensation for different catalysts showed less than 5% error. Thus, the given overpotential with error analysis manifest the intrinsic performance of the electrocatalysts.

3. Mass Normalized Activity:

The geometrical area normalized current density (mA cm⁻²) reflects the area of electrodes only. Hence, we reported the geometrical area normalized activity along with mass normalized activity(A g^{-1}).

4. Electrochemically Active Surface Area (ECSA) Normalized Activity:

The ECSA, a key descriptor, influencing the electrocatalytic reactions. Thus, the CV method was used to calculate the ECSA. The double-layer capacitance of the electrodes in a non-Faradaic potential region (0.1 V window about OCP) was identified from CV graph. Then, the following formula was used to caluculate ECSA.

ECSA = C_{dl} / C_{s} , taking C_{s} (specific capacitance) to equal 0.040 mF cm⁻², as adopted from a previous study on Co-based OER catalysts.

Later, the current density (10 mA cm⁻²) of each sample was normalized with its ECSA.

Fig. S1. XRD pattern of the Ti_3AIC_2 phase and the $Ti_3C_2T_x$ MXene phase.

Fig. S2. (a) SEM image of bare Co(OH)F, (b) Co(OH)F/MXene precursor, (c) bare CoP, and (d) bare Co_7Se_8 .

Fig. S3. (a-d) N_2 adsorption-desorption isotherm of various catalysts; (e-h) corresponding pore size distribution curves.

Fig. S4. (a) XRD pattern of Co(OH)F/Mxene, (b) CoP/Mxene, and (c) Co₇Se₈/MXene.

XRD analysis of the precursor Co(OH)F/MXene confirmed the formation of an orthorhombic crystalline phase of Co(OH)F (matching JCPDS card no. 50-0827) [**J. Mater. Chem. A, 2013, 1, 7511**]. The CoP/MXene showing diffraction peaks at 20 of 31.6, 36.4, 46.3, 48.3, 52.2, and 56.2°, respectively corresponding to the (011), (111), (112), (211), (103), and (301) planes of CoP (JCPDS no. 29-0497) [**J. Am. Chem. Soc. 2018, 140, 5241**]. The Co₇Se₈/Mxene exhibited peaks at 33.5°, 45.0°, 51.2°, 60.8°, 62.8°, and 70.7° are respectively assigned to the crystal planes of (101), (102), (110), (103), (112), and (202) of the hexagonal structure of Co_{0.85}Se (JCPDS No. 52-1008) [**ACS Appl. Mater. Interfaces 2017, 9, 30703**]. Furthermore, all of the samples showed a hump at 20 of ~7-8.0°, which could be ascribed to the concurrent presence of MXene.

Fig. S5. Mass activity graph for various catalysts.

Fig. S6. Cyclic voltammograms measured in non-Faradaic region of the voltammogram at different scan rate for different catalysts in 1 M KOH. The observed current is due to capacitive charging.

Fig. S7. (a) Nyquist plots for various catalysts (measured at 1.63 V vs RHE) in the frequency range from 0.1 Hz to 100 KHz (Symbol: raw data and Line: fitted data), and (b) The two-time constant serial (2TS) model used for fitting the impedance spectra of the catalysts. R_s is internal solution resistance, R_1 (higher frequency) is related to resistance of the electrolyte filling the pores of the electrode, and R_2 (lower frequency) is reflecting the charge transfer kinetics of the electrode during OER catalysis.Refere Table S3 for impedance parameters.

Fig. S8. (a) TEM image of CoP/MXene (Post-OER sample), (b) HAADF-TEM image and corresponding elemental mapping, (c) high resolution TEM image of CoP/MXene (Post-OER sample), and (d) EDX pattern with elemental composition of CoP/MXene (Post-OER sample).

a	b			Co		Se
100 m	250nm	Т	100nm	С	100nm	ı O
C MXene		。	Se 0 15	20 2	Map Sum	Spectrum
		Со	Se	Ti	С	0
	Wt%	49.07	4.50	3.04	25.93	17.46
<u>20 nm</u>	At%	35.39	0.95	1.05	47.52	15.09

Fig. S9. (a) TEM image of Co₇Se₈/MXene (Post-OER sample), (b) HAADF-TEM image and corresponding elemental mapping, (c) high resolution TEM image of Co₇Se₈/MXene (Post-OER sample), and (d) EDX pattern with elemental composition of Co₇Se₈/MXene (Post-OER sample). **Note:** The EDX peak of Potassium is due to the adsorption of alkaline electrolyte (KOH) on the surface of the catalyst during OER catalysis. The unlabelled peaks are due to copper grid.

Fig. S10. (a) TEM image of CoP/MXene (Fresh sample), and (b) corresponding EDS spectrum with elemental composition. (c) TEM image of Co₇Se₈/MXene (Fresh sample), and (d) corresponding EDX spectrum with elemental composition.

Fig. S11. Comparison between CoP/MXene, Co₇Se₈/MXene and Co(OH)F/MXene catalysts after OER catalysis for 10 h. (a) OER polarization curves (iR-compensated) for various catalysts in 1 mol L^{-1} KOH. (b) Nyquist plots for various catalysts (measured at 1.63 V vs RHE) in the frequency range from 0.1 Hz to 100 KHz. 2TS model was used for fitting the impedance spectra of the catalysts (Symbol: raw data and Line: fitted data). Refere Table S6 for impedance parameters.

Note:Conductivity is the prime parameter for electrocatalytic activity. The phosphides are metallic in nature and highly conductive¹. In the present case, the post OER sample is cobalt oxyhydroxide enriched-CoP. After prolonged OER catalysis, the CoP (under the surface of Co-OOH) has been reduced with the increase of oxide/oxyhydroxide. The oxyhydroxide counterparts is comparatively poor conductive in nature², thus the performance of post-OER samples are degraded.

References:

- 1. A. Dutta and N. Pradhan, J. Phys. Chem. Lett., 2017, 8, 144–152.
- M. Miao, R. Hou, R. Qi, Y. Yan, L. Q. Gong, K. Qi, H. Liu and B. Y. Xia, *J. Mater. Chem. A*, 2019, 7, 18925–18931

Electrocatalysts	Electrolyte	$\eta_{10 \text{ mA cm}}^{-2}$ (mV)	Tafel slope (mV dec ⁻¹)	Reference
CoP/MXene	1 М КОН	230	32.5	This work
CoP/NCNHP	1 M KOH	310	70	J. Am. Chem. Soc. 2018, 140, 2610.
S-Co _{9-x} Fe _x S ₈ @rGO	0.1 M KOH	290	66	Small. 2018, 14, 1703748.
HG-NiFe _x	1 M KOH	310	39	Sci. Adv. 2018 , 4, eaap7970.
Ni-NHGF	1 M KOH	331	63	Nat. Catal.2018, 1, 63.
Co/CoP-5	1 M KOH	283	79.5	Adv. Energy Mater. 2017, 7, 1602355.
Fe ₁ Co ₁ NS	0.1 M KOH	308	36.8	Adv. Mater.2017, 29, 606793.
NiCoP/C	1 M KOH	330	96	Angew.Chem.Int. Ed. 2017, 56, 3897.
MnCoPO _x	1 M KOH	320	52	Angew. Chem., Int. Ed. 2017, 56, 2386.
NiFe-LDH/Co,N-	0.1 M KOH	312	60	Adv. Energy Mater. 2017, 1700467.
CNF				
Ni ₂ P@C/G	1 M KOH	285	44	Chem.Commun., 2017, 53, 8372.
IrMn/Fe ₃ Mo ₃ C	0.1 M KOH	290	89	Adv. Mater.2017, 29, 1702385.
Fe-CoP@Ti	1 M KOH	230	67	Adv. Mater. 2017, 29, 1602441.
$Co_3O_4@CoP$	1 M KOH	238	51.4	Adv. Energy Mater. 2017, 7, 1602643.
Co ₄ Ni ₁ P NTs	1 M KOH	245	61	Adv. Funct. Mater. 2017, 27, 1703455.
CoNi(OH) _x	1 M KOH	280	77	Adv. Energy Mater. 2016, 6, 1501661.
Co-Bi NS/G	1 M KOH	290	53	Angew. Chem.Int. Ed. 2016, 55, 2488.
CoMnP	1 M KOH	330	61	J. Am. Chem. Soc. 2016, 138, 4006.
Ni-P	1M KOH	300	64	Energy Environ. Sci. 2016, 9, 1246.
FeP @ carbon fiber	1M KOH	350	63.6	Chem. Commun. 2016, 52, 8711.
CoP/Graphene	1M KOH	340	66	Chem. Sci. 2016, 7, 1690.
NiCo _{2.7} (OH) _x	1 M KOH	350	65	Adv. Energy Mater. 2015, 5, 1401880.
CoP	1 M KOH	345	47	Angew. Chem. Int. Ed. 2015, 127, 6349.
CoP/CNT	1M KOH	330	40	ACS Appl. Mater. Inter. 2015, 7, 28412.
CoP /C	1M KOH	320	84	ACS Catal. 2015, 5, 6874.
NiCoO	1 M KOH	340	51	Adv. Energy Mater. 2015, 5, 1500091.
CoP-MNA	1 M KOH	290	65	Adv. Funct. Mater. 2015, 25, 7337.

Table S1. A comparison of CoP/MXene OER performance with latest reported OER

 electrocatalysts in alkaline medium.

Electrocatalysts	$\eta_{10\text{mA cm}}^{-2}$ (mV)	Tafel slope (mV dec ⁻¹)	C _{dl} (mF/cm ²)	ECSA	RF	Relative ECSA
CoP/MXene	230	50	11	275	275	7.8
Co ₇ Se ₈ /MXene	291	81.5	2.5	62.5	62.5	1.8
СоР	280	56.5	5.7	142.5	142.5	4
Co ₇ Se ₈	325	97	1.4	35	35	1

Table S2. Summary of the OER performance, C_{dl} , ECSA and RF for different electrocatalysts measured in 1 M KOH.

Note: RF = ECSA/Geometrical area of electrode (1.0 cm²)

Table S3. Summary of Impedance parameters obtained by fitting the experimental data in Fig. S7.

Electrocatalyst	$R_s (\Omega \text{ cm}^2)$	R_{I} (Ω cm ²)	$R_2 (\Omega \text{ cm}^2)$
СоР	1.91	0.65	4.31
CoP/MXene	2.30	0.43	1.72
Co_7Se_8	2.65	0.95	8.2
Co ₇ Se ₈ /MXene	1.90	0.60	3.35

Table S4. A comparison of CoP/MXene HER performance with recently reported electrocatalysts in alkaline medium.

		n ₁₀	Tafal slope	
Electrocatalysts	Electrolyte	(mV)	(mV dec ⁻¹)	Reference
CoP/MXene	1 M KOH	116	57	This work
Ni _{0.9} Fe _{0.1} PS ₃ @ MXene	1 M KOH	196	114	Adv. Energy Mater. 2018, 8, 1801127.
NiFe LDH- NS@Graphene	1 M KOH	300	110	Adv. Mater. 2017, 29, 1700017.
CoP@NC	1 M KOH	129	58	ACS Catal.2017, 7, 3824.
Co/N-doped carbon	1 M KOH	260	91.2	ACS Nano 2016, 10, 684.
NiCo ₂ S ₄ NW/NF	1 M KOH	210	58.9	Adv. Funct. Mater. 2016, 26, 4661.
CoP	1 M KOH	80	60	Nanotechnology 2016,27 475702.
CoP	1 M KOH	110	70.9	Green Chem. 2016, 18, 2287.
Ni/NiP	1 M KOH	130	58.5	Adv. Funct. Mater. 2016, 26, 6785.
NiCoP	1 M KOH	43	59.4	ACS Appl. Mater. Inter. 2016, 8, 34270.
Ni _{0.5} 1Co _{0.49} P film/NF	1 M KOH	82	43	Adv. Funct. Mater. 2016, 26, 7644.
Ni-Co-P	1 M KOH	150	60.1	Chem. Commun. 2016, 52,1633.
CoO _x @CN	1 M KOH	232	115	J. Am. Chem. Soc. 2015, 137,2688.
Co-P film/Cu	1 M KOH	94	42	Angew. Chem., Int.Ed. 2015, 54, 625.

Table S5. Comparison of two electrode water splitting cell voltage of CoP/MXene with recently

 reported bifunctional electrocatalysts in alkaline medium.

Electrocatalysts	Electrolyte	Overall voltage V @ 10 mA cm ⁻²	Reference
CoP/MXene	1 M KOH	1.56	This work
NiCo-HS@G/NF// NiMo/NiCo-HS@G/NF	1 M KOH	1.51	Adv. Funct. Mater. 2018, 28, 1704594.
NiFe/Ni(OH)2/NiAl // NiMo/Ni(OH)2/NiAl	1 M KOH	1.59	Adv. Sci. 2017, 4, 1700084.
Ni ₃ Se ₂ /NF // NiCo ₂ S ₄ /NF	1 M KOH	1.58	Appl. Catal., B 2017, 203, 485.
NiCoP	1 M KOH	1.52	ACS Catal. 2017, 7, 4131.
EG/Co _{0.85} Se/NiFe-LDH	1 M KOH	1.67	Energy Environ. Sci. 2016, 9, 478.
NiCoP/rGO	1 M KOH	1.59	Adv. Funct. Mater. 2016, 26, 6785.
NiCo ₂ O ₄ /NF	1 M KOH	1.84	Adv. Funct. Mater. 2016, 26, 4661.
Ni(2.3%)-CoS ₂	1 M KOH	1.66	Elelctrochem. Commun. 2016, 63, 60.
NiS	1 M KOH	1.64	Chem. Commun. 2016, 52, 1486.
Ni ₃ S ₂ /MoS ₂	1 M KOH	1.56	Angew. Chem., Int. Ed. 2016, 55, 6702.
Ni _x P _y	1 M KOH	1.57	ACS Appl. Mater. Interfaces 2016, 8, 10826.
Ni-P	1 M KOH	1.67	ChemCatChem 2016 , 8,106.
NiCo ₂ S ₄	1 M KOH	1.68	Nanoscale 2015 , 7, 15122.
Ni ₃ Se ₂	1 M KOH	1.65	Catal. Sci. Technol. 2015, 5, 4954.
Ni ₂ P	1 M KOH	1.63	Energy Environ. Sci. 2015, 8, 2347.

Electrocatalyst	$R_s (\Omega \text{ cm}^2)$	$R_1 (\Omega \text{ cm}^2)$	$R_2 (\Omega \text{ cm}^2)$
CoP/MXene	2.30	0.43	1.72
CoP/MXene (Post-OER)	1.90	0.61	3.46
Co ₇ Se ₈ /MXene	1.90	0.60	3.35
Co ₇ Se ₈ /MXene (Post-OER)	2.82	2.97	16.2
Co(OH)F/MXene	2.92	0.60	2.71
Co(OH)F/MXene (Post-OER)	3.16	0.61	5.18

Table S6. Summary of Impedance parameters obtained by fitting the experimental data inFig. S6.