Supporting Information

Three-dimensional Assembly of Carbon Nitride Tubes as Nanoreactors for Enhanced Photocatalytic Hydrogen Production

Chen Zhao^a, Qi Li^a, Ying Xie^a, Liping Zhang^c, Xudong Xiao^a, Dan Wang^a, Yanqing Jiao^a, Cameron Alexander Hurd Price^{b,d}, Baojiang Jiang^{*a}, and Jian Liu^{*b,d}

^a C. Zhao, Q. Li, Prof. Y. Xie, X. D. Xiao, D. Wang, Dr. Y. Q. Jiao, Prof. B. J. Jiang Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People' s Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.

^b C. A. H. Price, Prof. J. Liu
 State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457
 Zhongshan Road, Dalian 116023, China

^c Dr. L.P. Zhang Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA

^{*d*}C. A. H. Price, Prof. J. Liu DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey, UK

E-mail: jbj@hlju.edu.cn; jian.liu@surrey.ac.uk

Figure S1. XRD pattern of precursor (red line), commercial cyanuric acid (black line), commercial melamine (green line) and commercial 3-amino-1,2,4-triazole (blue line).

Figure S2. The FI-IR spectra of commercial melamine (black line), the precursor (red line), commercial cyanuric acid (green line) and commercial 3-amino-1,2,4-triazole (AT, blue line).

Figure S3. Solid-state ¹³C MAS NMR spectra of melamine, cyanuric acid 3-amino-1, 2, 4-triazole and precursor.

Figure S4. N₂-sorption isotherms of GCN and A-CN-1.

Figure S5. The pore size distribution of GCN and A-CN-1.

Figure S6. XRD pattern of serials of products with different proportions 3-amino-1, 2, 4triazole and reference sample GCN.

Figure S7. Solid-state ¹³C MAS NMR spectra of GCN and A-CN-1.

Sample	C (Atom conc%)	N (Atom conc%)	P (Atom conc%)	N/C
GCN	41.12	55.46	0	1.35
A-CN-1	40.45	58.88	0	1.46

 Table S1. XPS analysis of GCN and A-CN-1

Sample	C (wt%)	N (wt%)	N/C	
GCN	35.12	56.34	1.38	
A-CN-1	34.11	58.98	1.48	

 Table S2. Organic elemental analysis of GCN and A-CN-1.

Figure S8. C 1s XPS spectra of GCN and A-CN-1.

Figure S9. O 1s XPS spectra of GCN and A-CN-1.

Figure S10. P 2p XPS spectra of GCN and A-CN-1.

Figure S11. EEL spectrum of GCN and A-CN-1.

Figure S12. SEM images (a, b) of A-CN-1 after photocatalytic hydrogen production process.

Sample	τ ₁ (ns)	Rel.%	τ ₂ (ns)	Rel.%	τ ₃ (ns)	Rel.%
GCN	1.47	31.62	5.76	47.68	32.75	20.70
A-CN-1	1.10	29.99	5.01	46.17	27.88	23.84

 Table S3.
 Kinetic analysis of emission decay for GCN and A-CN-1.

Catalyst	Hydrogen evolution rate (μmol/h)	Hydrogen evolution rate (µmol/h/g)	Experimental conditions	Light source filter (nm)	BET(m²g⁻¹)	Reference
A-CN-1	71 (10mg)	7100	1wt% Pt 20% methanol	AM 1.5	71	This work
g- C ₃ N ₄ /KNbO ₃ (1:1)	101.9 (100mg)	1019.38	2 wt% Pt 20%TEOA	AM 1.5		1
UCN	47.2 (80mg)	590	3 wt% Pt 10% TEOA	AM 1.5	69.6	2
KSCN-treated Melon	24.7 (20mg)	1235	8 wt% Pt 20% methanol	AM 1.5	55	3
Urea-CNx	56.2 (20mg)	2810	2 wt% Pt 10% methanol	AM 1.5	64.6	4
C₃N₄-Ni-Tu- TETN	51 (100mg)	510	0.05 mmol Ni ²⁺ 3 mmol Tu 22% TEOA	AM 1.5		5
CNHS	57.4 (20mg)	2860	3 wt% Pt 10% TEOA	>400	277.89	6
PCN-S	79.8 (50mg)	1596	1 wt% Pt 20% TEOA	>400	122.6	7
P-TCN	67 (100mg)	670	1wt% Pt 20% methanol	>420	22.9	8
R-CN-350	19 (10mg)	1900	3wt% Pt 10% TEOA	>420	29.9	9
CN-NaK	278 (50mg)	5560	3wt% Pt 10% TEOA	>420	74	10

Table S4. Summary of C_3N_4 -base nanostructures photocatalysts reported for hydrogen evolution rate.

Reference:

1. D. Xu, L. Li, T. Xia, W. Fan, F. Wang, H. Bai and W. Shi, Int. J. Hydrogen. Energy, 2018, 43, 16566-16572.

2. Y. Zhang, J. Liu, G. Wu and W. Chen, *Nanoscale*, 2012, **4**, 5300-5303.

3. V. W. Lau, I. Moudrakovski, T. Botari, S. Weinberger, M. B. Mesch, V. Duppel, J. Senker, V. Blum and B. V. Lotsch, *Nature commun.*, 2016, **7**, 12165.

4. V. W.-h. Lau, V. W.-z. Yu, F. Ehrat, T. Botari, I. Moudrakovski, T. Simon, V. Duppel, E. Medina, J. K. Stolarczyk, J. Feldmann, V. Blum and B. V. Lotsch, *Adv. Energy Mater.*, 2017, **7**, 1602251.

5. D. Wang, Y. Zhang and W. Chen, *Chem. Commun.*, 2014, **50**, 1754-1756.

6. Y. Li, R. Jin, Y. Xing, J. Li, S. Song, X. Liu, M. Li and R. Jin, *Adv. Energy Mater.*, 2016, **6**, 1601273.

7. J. Ran, T. Y. Ma, G. Gao, X.-W. Du and S. Z. Qiao, *Energy Environ. Sci.*, 2015, **8**, 3708-3717.

8. S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan and H. Fu, Angew. Chem. Int. Ed., 2016, 55, 1830-1834.

9. L. Cui, J. Song, A. F. McGuire, S. Kang, X. Fang, J. Wang, C. Yin, X. Li, Y. Wang and B. Cui, ACS nano, 2018, 12, 5551-5558.

10. G. Zhang, L. Lin, G. Li, Y. Zhang, A. Savateev, S. Zafeiratos, X. Wang and M. Antonietti, *Angew. Chem. Int. Ed.*, 2018, **57**, 9372-9376.