Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is $\[mathbb{C}$ The Royal Society of Chemistry 2019

Supplementary Information

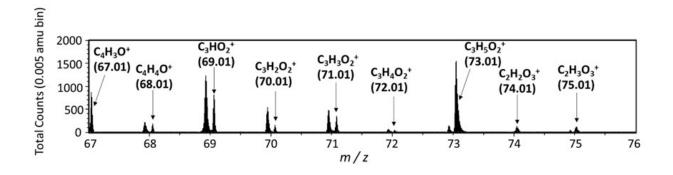
Are Type 316L Stainless Steel Coin Cells Stable in Nonaqueous Carbonate Solutions Containing NaPF₆ or KPF₆ salt?

Hee Jae Kim^a, Hitoshi Yashiro^b, Hyungsub Kim^c, Seoungsu Lee^c, Seung-Taek Myung^{*a}

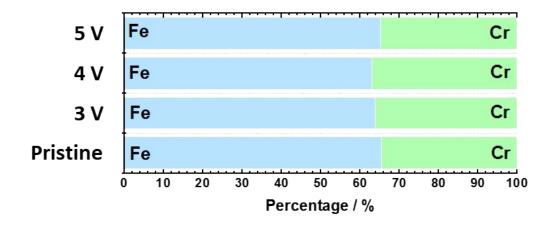
^aDepartment of Nano Technology and Advanced Materials Engineering, Sejong University,

Gunja-dong, Gwangjin-gu, Seoul 05006, South Korea

^bDepartment of Chemistry and Bioengineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate


020-8551, Japan

^cKorea Atomic Energy Research Institute, Daedeok-daero 989 Beon-Gil, Yuseong-gu, Daejon


34507, South Korea

Element	Concentration of element (mass %)
С	0.03
Mn	2
Р	0.045
S	0.03
Si	0.75
Cr	16-18
Ni	10-14
Мо	2-3
Ν	0.1
Fe	Balance

Table S1. The chemical composition of type 316L stainless steel.

Fig. S1. ToF-SIMS spectra for the surface of type 316L SS transiently polarized at 4 V, and (e) 5 V versus Na⁺/Na. For the index of fragments, CrO^+ (m = 67.93), CrF^+ (m = 70.93), FeO⁺ (m = 71.92), and FeF⁺ (m = 74.93) fragments are indicated in Figs. 3 and 6.

Fig. S2. Chromium/iron atomic ratio in oxide layer on type 316L SS polarized at each potential in Na solution based on XPS analysis.