Supporting Information

Study of Active Sites on Se-MnS/NiS Heterojunctions as Highly Efficient Bifunctional Electrocatalysts for Overall Water Splitting

Jie Zhu,¹ Mao Sun,¹ Shujie Liu,¹ Xianhu Liu,² Kan Hu,¹ and Lei Wang^{1,2,*}

¹ College of Chemistry and Chemical Engineering, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China

² Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450002, China

E-mail: wanglei@imu.edu.cn

Figure S1. SEM images of NiMn LDH with various KMnO₄ concentrations: (a) 0.25 mM; (b)

0.5 mM; (c) 0.75 mM.

Figure S2. (a,b) SEM and (c-e) TEM images of NiMn LDH.

Figure S3. XRD pattern of NiMn LDH powder.

Figure S4. (a) XPS survey spectra, (b) Mn 2p, (c) Ni 2p, and (d) O 1s spectra of NiMn LDH; (e) corresponding element contents. Mn 2p spectrum indicates the 4+ oxidation state of Mn in LDH.

Figure S5. (a,b) SEM, (c-f) TEM images, and (g) EDS mappings of Se-NiMn oxide. It shows the homogeneous distribution of Mn, Ni, Se, and O.

Figure S6. (a) Mn 2p, (b) Ni 2p, (c) Se 3d, and (d) O 1s XPS spectra of Se-NiMn oxide; (e) corresponding element contents.

The lattice defects and amorphous phase existed in Se-NiMn oxide can be attributed to the incorporation of Se. The nanosheet structure of Se-NiMn oxide becomes thinner compared to the NiMn LDH. Besides, after selenization, Se 3d XPS peak (**Figure S6c**) shows the Se-O bond, while no metal-Se bond is formed, indicating the incorporation of Se in the host material. The O 1s XPS peak (**Figure S6d**) exhibits the obvious hydroxyl oxygen -OH bond in Se-NiMn oxide compared to that of NiMn LDH. This provides an information that the hydroxylated

surface of Se-NiMn oxide after selenization owing to the Se doping. These results are in accordance with the literature as well.¹

Figure S7. (a,b) AFM images and (c,d) corresponding line scan profiles of Se-MnS/NiS.

Figure S8. TEM image of Se-MnS/NiS heterostructure.

2000		Element	wt.%	at.%
		Mn	30.74	21.05
1500		Ni	25.86	16.57
8 1000		Se	0.19	0.09
500	ç.	S	33.37	39.17
	5* 5*).	0	9.82	23.10

Figure S9. TEM-EDS spectrum of Se-MnS/NiS with the corresponding element contents.

Figure S10. (a) SEM image of Se-MnS/NiS and corresponding element mappings of (b) Mn, (c) Ni, (d) S, (e) Se, and (f) O; (g) EDX spectrum of Se-MnS/NiS with the corresponding element contents.

Figure S11. TEM images of MnS/NiS.

Figure S12. (a) Mn 2p, (b) Ni 2p, (c) S 2p and Se 3p, (d) Se 3d, and (e) O 1s XPS spectra of Se-MnS/NiS.

In the O 1s spectrum (**Figure S12e**), the peak at 531.7 eV attributed to hydroxyl oxygen -OH bond is shown on the Se-MnS/NiS. The amorphous layer with a thickness of 1-2 nm is hydroxide covered on the top surface.

Figure S13. IR-corrected LSV curves for HER of Se-MnS/NiS with different S annealing temperatures (a) and times (b) in 1 M KOH. The optimal sulfuration time for HER is at 350 °C for 60 min.

Catalysts	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	J_0 (mA cm ⁻²)	
Se-MnS/NiS	56	55	967	
MnS/NiS	92	111	664	
NiMn LDH	220	128	298	
NF	250	150	178	
Pt/C	46	41	1198	

Table S1. The HER performances of different catalysts in 1 M KOH electrolyte.

Figure S14. IR-corrected LSV curves for HER of NiSe, NiS, Se-NiS, MnS/NiS, and Se-MnS/NiS in 1 M KOH.

Figure S15. (a-c) CV curves of (a) NiMn LDH, (b) MnS/NiS, and (c) Se-MnS/NiS for HER at different scan rates; (d) liner fitting of the C_{dl} of the catalysts versus scan rate for the estimation of the ECSA.

Figure S16. TEM images of Se-MnS/NiS after HER.

Figure S17. (a) Mn 2p, (b) Ni 2p, (c) S 2p, and (d) Se 3d XPS spectra of Se-MnS/NiS before and after HER and OER.

Figure S18. O 1s XPS spectra of Se-MnS/NiS after HER and OER.

Figure S19. IR-corrected LSV curves for OER of Se-MnS/NiS with different S annealing times at 350 °C in 1 M KOH. The optimal sulfuration time for OER is 80 min.

Figure S20. Determination of overpotential for OER by cyclic voltammetry at a scan rate of 50

mV s⁻¹. Here take NiMn LDH catalyst as example.

Figure S21. (a-c) CV curves of (a) NiMn LDH, (b) MnS/NiS and (c) Se-MnS/NiS for OER at different scan rates; (d) liner fitting of the C_{dl} of the catalysts versus scan rate for the estimation of the ECSA.

Figure S22. TEM images of Se-MnS/NiS after OER.

Figure S23. TEM images of Se-MnS/NiS after Ar plasma etching. The samples were treated

in Ar plasma condition at 200 W for 20 min.

Figure S24. IR-corrected LSV curves for (a) OER and (b) HER of Se-MnS/NiS with and without the amorphous layer.

Figure S25. IR-corrected LSV curves for OER of NiMn LDH with different $KMnO_4$ concentrations in 1 M KOH.

Figure S26. IR-corrected LSV curves for OER (a,b) and HER (c,d) of Se-NiMn oxide with different Se annealing temperatures (a,c) and times (b,d) in 1 M KOH. The optimal sulfuration time for OER and HER is 350 °C for 30 min.

Figure S27. IR-corrected LSV curves for OER of NiSe, NiS, Se-NiS, MnS/NiS, and Se-MnS/NiS in 1 M KOH.

Figure S28. Comparison of HER performance in 1 M KOH under different reference electrodes. Here take NiMn LDH as example.

Please note: E (vs. RHE) = E (vs. SCE) + $0.0591 \times pH + 0.2412$ (25 °C)

E (vs. RHE) = E (vs. Hg/HgO) + 0.0591×pH + 0.098 (25 °C)

Catalyst	Catalyst Electrolyte		η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	Stability (h)	Reference
Se-MnS/NiS	1M KOH	Ni foam	56	55	48	This work.
Ni ₃ N-VN/NF	1М КОН	Ni foam	64	37	20	1
NF/T(Ni ₃ S ₂ /MnS-O)	1М КОН	Ni foam	116	41	50	2
Fe ₃ W ₃ C NRs/RGO	1М КОН	Glassy carbon	77	80	10 ⁴ cycles	3
Co@N-CS/N- HCP@CC	1М КОН	Carbon cloth	66	65	30	4
Co ₃ S ₄ /EC-MOF	1М КОН	Carbon cloth	84	82	24	5
NF-Ni ₃ S ₂ /MnO ₂	1М КОН	Ni foam	102	69	48	6
Co ₉ S ₈ /Ni ₃ S ₂	1М КОН	Ni foam	128	97.6	9	7
Cu-Ni nanocages	1М КОН	Glassy carbon	140	79	8	8
N-Co ₂ P/CC	1М КОН	Carbon cloth	34	51	3.3	9
Se- (NiCo)S/OH	1М КОН	Ni foam	103	87.3	80	10
NiFe	1М КОН	Ni foam	120	88.2	100	11
LDH@NiCoP/NF						

Table S2. Comparison of the HER performance of Se-MnS/NiS with other recently reported

 electrocatalysts in 1 M KOH.

References

- H. J. Yan, Y. Xie, A. P. Wu, Z. C. Cai, L. Wang, C. G. Tian, X. M. Zhang and H. G. Fu, *Adv. Mater.*, 2019, **31**, 1901174.
- 2. Y. Zhang, J. L. Fu, H. Zhao, R. J. Jiang, F, Tian and R. J. Zhang, Appl. Catal. B: Environ., 2019,

257, 117899.

- 3. C. Y. He, T. Bo, B. T. Wang and J. Z. Tao, Nano Energy, 2019, 62, 85-93.
- Z. L. Chen, Y. Ha, H. X. Jia, X. X. Yan, M. C, M. Liu and R. B. Wu, *Adv. Energy Mater.*, 2019, 9, 1803918.
- 5. T. Liu, P. Li, N. Yao, T. G. Kong, G. Z. Cheng, S. L. Chen and W. Luo, Adv. Mater., 2019, 31, 1806672.
- 6. Y. Xiong, L. L. Xu, C. D. Jin and Q. F. Sun, Appl. Catal. B: Environ., 2019, 254, 329-338.
- F. Du, L. Shi, Y. T. Zhang, T. Li, J. L. Wang, G. H. Wen, A. Alsaedi, T. Hayat, Y. Zhou and Z. G. Zou, *Appl. Catal. B: Environ.*, 2019, 253, 246-252.
- Z. X. Li, C. C. Yu, Y. Y. Wen, Y. Gao, X. F. Xing, Z. T. Wei, H. Sun, Y. W. Zhang and W. Y. Song, ACS Catal., 2019, 9, 5084-5095.
- 9. Y. N. Men, P. Li, J. H. Zhou, G. Z. Cheng, S. L. Chen and W. Luo, ACS Catal., 2019, 9, 3744-3752.
- 10. C. L. Hu, L. Zhang, Z. J. Zhao, A. Li, X. X. Chang and J. L. Gong, Adv. Mater., 2018, 30, 1705538.
- H. J. Zhang, X. P. Li, A. Hähnel, V. Naumann, C. Lin, S. Azimi, S. L. Schweizer, A. W. Maijenburg and R. B. Wehrspohn, *Adv. Funct. Mater.*, 2018, 28, 1706847.

Catalyst	Electrolyte	Substrate	η_{10}	Tafel slope	Stability	Reference	
			(mV)	(mV dec ⁻¹)	(h)		
Se-MnS/NiS	1М КОН	Ni foam	211	55	48	This work.	
MoS ₂ -Ni ₃ S ₂	1М КОН	Ni foam	249	57	48	1	
HNRs/NF						1	
Co-Bi/BNC	1М КОН	Glassy carbon	286	70.9	20	2.	
N-Fe ₂ PO _{5-x} -OT	1М КОН	Ni foam	235	27.2	30	3	
Ni ₂ P-VP/NF	1М КОН	Ni foam	306	49	20	4	
Co ₉ S ₈ /Ni ₃ S ₂	1М КОН	Ni foam	227	46.5	9	5	
w-Ni(OH) ₂	1М КОН	Glassy carbon	237	33	12	6	
CTGU-10c2	1М КОН	Glassy carbon	240	58	50	7	
$Co(S_{0.22}Se_{0.78})_2$	1М КОН	Ni foam	283	65.6	20	8	
NF/T(Ni ₃ S ₂ /MnS-O)	1М КОН	Ni foam	228	46	50	9	
	1М КОН	Rotating disc	• 60	44	16	10	
N1 ₃ Mn ₁		electrode	260			10	
FeOOH(Se)/IF	1М КОН	Iron foam	287	54	15	11	

Table S3. Comparison of the OER performance of Se-MnS/NiS with other recently reported

 electrocatalysts in 1 M KOH.

References

- Y. Q. Yang, K. Zhang, H. L. Lin, X. Li, H. C. Chan, L. C. Yang and Q. S. Gao, ACS Catal., 2017, 7, 2357-2366.
- 2. Q. Hu, G. M. Li, Z. Han, Z. Y. Wang, X. W. Huang, X. Y. Chai, Q. L. Zhang, J. H. Liu and C. X. He,

Adv. Energy Mater., 2019, 9. 1901130.

- Y. Z. Wu, Y. N. Meng, J. G. Hou, S. Y. Cao, Z. M. Gao, Z. J. Wu and L. C. Sun, *Adv. Funct. Mater.*, 2018, 28, 1801397.
- H. J. Yan, Y. Xie, A. P. Wu, Z. C. Cai, L. Wang, C. G. Tian, X. M. Zhang and H. G. Fu, *Adv. Mater.*, 2019, **31**, 1901174.
- F. Du, L. Shi, Y. T. Zhang, T. Li, J. L. Wang, G.H. Wen, A. Alsaedi, T. Hayat, Y. Zhou and Z. G. Zou, *Appl. Catal. B: Environ.*, 2019, 253, 246-252.
- J. Q. Yan, L. Q. Kong, Y. J. Ji, J. White, Y. Y. Li, J. Zhang, P. F. An, S. Z. Liu, S. T. Lee and T. Y. Ma, *Nat. Commun.*, 2019, 10, 2149.
- W. Zhou, D. D. Huang, Y. Pan. Wu, J. Zhao, T. Wu, J. Zhang, D. S. Li, C. H. Sun, P. Y. Feng and X. H. Bu, *Angew. Chem. Int. Ed.*, 2019, 58, 4227-4231.
- L. Fang, W. X. Li, Y. X. Guan, Y. Y. Feng, H. J. Zhang, S. L. Wang and Y. Wang, *Adv. Funct. Mater.*, 2017, 27, 1701008.
- Y. Zhang, J. L. Fu, H. Zhao, R. J. Jiang, F, Tian and R. J. Zhang, *Appl. Catal. B: Environ.*, 2019, 257, 117899.
- 10. A. Sumboja, J. W. Chen, Y. Zong, P. S. Lee and Z. L. Liu, Nanoscale, 2017, 9, 774-780.
- S. Niu, W. J. Jiang, Z. X. Wei, T. Tang, J. M. Ma, J. S, Hu and L. J. Wan, *J. Am. Chem. Soc.*, 2019, 141, 7005-7013.

Catalyst	Floatrolyto	Substrate	η_{10}	Stability	Defenence
Catalyst	Electrolyte	Substrate	(mV)	(h)	Kelerence
Se-MnS/NiS	1 M KOH	Ni foam	1.47	48	This work.
Co-Bi/BNC	1 M KOH	Glassy carbon	1.53	20	1
NOCE 999	1 М КОН	Rotating disk	1.65	20	2
NUGB-800		electrode	1.65		
Co@N-CS/N-			1.545	24	3
НСР@СС	І М КОН	Carbon cloth			
Se-(NiCo)S/OH	1 M KOH	Ni foam	1.55	66	4
CoFe oxides/NF	1 M KOH	Ni foam	1.63	13.9	5
Ni ₃ N-VN/NF & Ni ₂ P-			1.51	100	6
VP ₂ /NF	І М КОН	Ni toam			
NF/T(Ni ₃ S ₂ /MnS-O) 1 M KOH		Ni foam	1.54	50	7
NF-Ni ₃ S ₂ /MnO ₂	1 M KOH	Ni foam	1.52	48	8
CoMoNiS-NF-31	1 M KOH	Ni foam	1.54	24	9
NE D/CC	1 М КОН	Rotating ring-disk	1.54	40	10
NIFeP/SG		electrode	1.54		10

 Table S4. Comparison of the full water splitting performance of Se-MnS/NiS with other

 recently reported advanced electrocatalysts in 1 M KOH.

References

 Q. Hu, G. M. Li, Z. Han, Z. Y. Wang, X. W. Huang, X. Y. Chai, Q. L. Zhang, J. H. Liu and C. X. He, *Adv. Energy Mater.*, 2019, **9**. 1901130.

- Q. Hu, G. M. Li, G. D. Li, X. F. Liu, B. Zhu, X. Y. Chai, Q. L. Zhang, J. H. Liu and C. X. He, *Adv. Energy Mater.*, 2019, 9, 1803867.
- Z. L. Chen, Y. Ha, H. X. Jia, X. X. Yan, M. C, M. Liu and R. B. Wu, *Adv. Energy Mater.*, 2019, 9, 1803918.
- 4. C. L. Hu, L. Zhang, Z. J. Zhao, A. Li, X. X. Chang and J. L. Gong, Adv. Mater., 2018, 30, 1705538.
- L. L. Huang, D. W. Chen, G. Luo, Y. R. Lu, C. Chen, Y. Q. Zou, C. L. Dong. Y. F. Li and S. Y. Wang, *Adv. Mater.*, 2019, **31**, 1901439.
- H. J. Yan, Y. Xie, A. P. Wu, Z. C. Cai, L. Wang, C. G. Tian, X. M. Zhang and H. G. Fu, *Adv. Mater.*, 2019, **31**, 1901174.
- Y. Zhang, J. L. Fu, H. Zhao, R. J. Jiang, F, Tian and R. J. Zhang, *Appl. Catal. B: Environ.*, 2019, 257, 117899.
- 8. Y. Xiong, L. L. Xu, C. D. Jin and Q. F. Sun, Appl. Catal. B: Environ., 2019, 254, 329-338.
- Y. Yang, H. Q. Yao, Z. H. Yu, S. M. Islam, H. Y. He, M. W. Yuan, Y. H. Yue, K. Xu, W. C. Hao, Gen. B. Sun, H. F. Li, S. L. Ma, P. Zapol and M. G. Kanatzidis, *J. Am. Chem. Soc.*, 2019, 141, 10417-10430.
- R. Q. Li, B. Lu. Wang, T. Gao, R. Zhang, C. Y. Xu, X. F. Jiang, J. J. Zeng, Y. Bando, P. F. Hu, Y. L. Li and X. B. Wang, *Nano Energy*, 2019, **58**, 870-876.