Electronic Supplementary Information

"Defect Chemistry of Disordered Solid-State Electrolyte

 $\textbf{Li}_{10}\textbf{GeP}_2\textbf{S}_{12}\textbf{"}$

Prashun Gorai, *,†,‡ Hai Long,‡ Eric Jones,† Shriram Santhanagopalan,‡ and Vladan

Stevanović*,†,‡

†Colorado School of Mines, Golden, CO, USA ‡National Renewable Energy Laboratory, Golden, Colorado 80401, USA

E-mail: pgorai@mines.edu; vstevano@mines.edu

Phase Stability of $Li_{10}GeP_2S_{12}$ in Chemical Potential Space

The phase stability region of Li₁₀GeP₂S₁₂ is calculated from the DFT total energies of competing phases and reference chemical potentials $\mu_{\text{Li}}^0 = -1.58 \text{ eV}$, $\mu_{\text{Ge}}^0 = -4.34 \text{ eV}$, $\mu_{\text{P}}^0 = -5.14 \text{ eV}$, and $\mu_{\text{S}}^0 = -4.01 \text{ eV}$.

Corner	$\begin{array}{c} \Delta \mu_{\rm Li} \\ (eV) \end{array}$	$\begin{array}{c} \Delta \mu_{\rm Ge} \\ (eV) \end{array}$	$\Delta \mu_{\rm P}$ (eV)	$\Delta \mu_{\rm S}$ (eV)	Phases in Equilibrium with $\rm Li_{10}GeP_2S_{12}$
P-1	-2.528	-1.509	-1.634	0.000	S, GeS_2, Li_4GeS_4
P-2	-2.530	-1.509	-1.627	0.000	S, GeS_2, Li_3PS_4
P-3	-2.396	-2.046	-2.030	0.000	S, Li_2S, Li_3PS_4
P-4	-2.396	-2.040	-2.033	0.000	S, Li_2S, Li_4GeS_4
P-5	-2.171	-0.427	-0.186	-0.629	$\mathrm{LiP}_7,\mathrm{GeP}_3,\mathrm{Li}_3\mathrm{PS}_4$
P-6	-2.166	-0.424	-0.187	-0.634	$\mathrm{LiP}_7,\mathrm{GeP}_3,\mathrm{Li}_4\mathrm{GeS}_4$
P-7	-2.245	-0.371	-0.204	-0.569	$\mathrm{GeS}_2,\mathrm{GeP}_3,\mathrm{Li}_3\mathrm{PS}_4$
P-8	-2.243	-0.366	-0.206	-0.571	GeS_2, GeP_3, Li_4GeS_4
P-9	-2.031	-0.587	-0.206	-0.729	Li_2S , LiP_7 , Li_3PS_4
P-10	-2.030	-0.579	-0.206	-0.731	$\mathrm{Li}_2\mathrm{S},\mathrm{LiP}_7,\mathrm{Li}_4\mathrm{GeS}_4$

Table S1: Phase stability region of $Li_{10}GeP_2S_{12}$ in the quaternary Li-Ge-P-S chemical potential space.

Effect of \mathbf{P}_{Ge} Anti-Site Defects on the Local Structure

Figure S1: Effect of P_{Ge} anti-site defect on the local structure of LGPS.