Supplementary Information:

Charge transfer dynamics in singlet fission organic molecule and organometal perovskite bilayer structure

Deqiang Guo,^a Lin Ma,^{*a} Zilin Zhou,^a Dabin Lin,^a Cheng Wang,^a Xin Zhao,^a Fangteng Zhang,[†] Jiahua Zhang^b and Zhaogang Nie^{*a}

^aSchool of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, China

^bState Key Laboratory of Luminescence and Applications, CIOMP, Chinese Academy of Sciences, Changchun, China

*Email: malin@gdut.edu.cn; zgnie@gdut.edu.cn

The TA decay traces were fitted using a convolution from the autocorrelation trace with a four-exponential differential equation (eq S3). The obtained negative A_0 represents the existence of a rise component τ_0 .

$$\frac{d(\Delta A)}{dt} = -A_0 e^{-t/\tau_0} - A_1 e^{-t/\tau_1} - A_2 e^{-t/\tau_2} - A_3 e^{-t/\tau_3}$$
(S1)

Sample	λ_{probe} (nm)	τ ₀ , ps (rise)	A_0	$ au_1, \\ \mathrm{ps}$	A_1	τ_2 , ps	A_2	τ ₃ , ps	A ₃
MAPbI ₃	750	0.47	-44%	27	15%	200	46%	1900	39%
		± 0.03		± 9		± 42		± 450	
TIPS-pentacene/	750	0.56	700/	17	14%	200	45%	1500	41%
MAPbI ₃		± 0.03	-/0%0	± 4		± 25		± 230	

Table S1. 800 nm excitation TA kinetics fitting parameters.

Sample	$\lambda_{ m probe}$ (nm)	τ ₀ , ps (rise)	A ₀	τ_1, ps	A_1	τ_2 , ps	A_2	τ_3, ps	A ₃
MAPbI ₃	735 nm	0.8 ±0.1	-19.1%	27 + 3	60.2%	150 + 50	31%	1200 ± 520	11.6%
TIPS- pentacene	530nm	0.69 ±0.04	-34.7%	44 ±8	33.1%	220 ±79	36.4%	1400 ±390	30.6%
	900 nm			6 ±1	13%	81 ±7	44.9%	950 ±80	42.1%
TIPS- – pentacene /MAPbI ₃ –	735nm	1.49 ±0.04	-38.5%	37 ±2	56.4%	200 ±43	29.1%	1400 ±390	14.5%
	530nm	0.41 ±0.03	-32.1%	18 ±2	31%	150 ±18	41.7%	1400 ±220	27.4%
	900 nm			1.5 ±0.1	32.1%	31±3	32.1%	570 ±40	35.8%

Table S2. 650 nm excitation TA kinetics fitting parameters.

Figure S1. (a)-(c) Normalized transient kinetics of MAPbI₃ (black), TIPS-pentacene (blue) and TIPS-pentacene/MAPbI₃ bilayer (red) at different probe wavelengths in 5 ns window.

Figure S2. (a) UPS spectra of TIPS-pentacene and MAPbI₃ film. (b) $(\alpha h\nu)^2$ -hv curves of TIPS-pentacene and MAPbI₃ film. (c) Energy level diagram of MAPbI₃ and TIPS-pentacene film.

Ultraviolet photoelectron spectroscopy (UPS) measurements were carried out to determine the energies of valence band maximum (E_{VBM}) and highest occupied molecular orbital (E_{HOMO}) of MAPbI₃ and TIPS-pentacene films, respectively. As shown in Figure S2(a), according to the linear extrapolating method¹, the E_{cutoff} of the MAPbI₃ and TIPS-pentacene films were 17.10 and 16.73 eV, the E_{edge} of MAPbI₃ and TIPS-pentacene films were 1.34 and 0.57 eV. The work functions (Φ) of MAPbI₃ and TIPS-pentacene films were determined to be 4.12 and 4.49 eV (referenced to vacuum level) correspondingly, by using eq S2.² The E_{VBM} of MAPbI₃ and E_{HOMO} of TIPS-pentacene film were calculated to be the -5.46 and -5.06 eV (vs vacuum) respectively, by using eq (S3).²

$$\Phi = hv - E_{cutoff} \tag{S2}$$

$$E_{VBM} = E_{edge} + \Phi \tag{S3}$$

As shown in Figure S2(b), band gap energies of MAPbI₃ and TIPS-pentacene films were determined to be 1.53 and 1.71 eV (versus vacuum) respectively from the Tacu ($(\alpha hv)^2$ -hv) plots.^{3,4} The energies of conduction band minimum (E_{CBM}) and lowest unocupied molecular orbital (E_{LUMO}) of MAPbI₃ and TIPS-pentacene films were determined to be -3.95 and -3.35 eV respectively, calculated by adding corresponding optical band gap to the E_{VBM} or E_{HOMO} . The obtained energy level diagram of MAPbI₃ and TIPS-pentacene films were presented in Figure S3.

Figure S3. Broadband excitation transient absorption spectra of (a) MAPbI₃, (b) TIPSpentacene and (c) TIPS-pentacene/MAPbI₃ bilayer films at different delay times. (d)-(f) Normalized transient kinetics of MAPbI₃ (black), TIPS-pentacene (blue) and TIPSpentacene/MAPbI₃ bilayer (red) at different probe wavelengths.

Sample	$\lambda_{ m probe}$ (nm)	τ ₀ , ps (rise)	A_0	τ_1, ps	A_1	τ_2 , ps	A_2	τ_3 , ps	A ₃
MAPbI ₃	735	0.62	-42.1%	19	51.2%	90	34.6%	760	14.2%
		± 0.02		±1		±20		± 170	
TIPS pentacene	530	0.6	-33.3%	140	54.8%	1200	45.2%		
	550	± 0.1		± 30		± 470			
	000			43	26.7%	290	42.7%	1900	30.6%
	900			± 9		±90		±900	
TIPS- — pentacene/ MAPbI ₃ —	725	0.73	-88.5%	32	55.9%	200	32.3%	1700	11.8%
	/33	± 0.02		± 3		± 60		± 1000	
	530	0.21	-100%	34	32.4%	480	41.2%	> 10	26.50/
		± 0.01		± 4		± 50		>10ns	20.3%
	900			1.08	35.5%	50	30.3%	770	24 20/
				±0.04		±3		± 50	34.2%

Table S3. Broadband excitation TA kinetics fitting parameters.

			81		
Sample	τ_1 , ns	A_1	τ_2 , ns	A_2	$\tau_{average}, ns$
MAPbI ₃	3.6±0.05	70.7%	94±1	29.3%	28.3
TIPS-pentacene/ MAPbI ₃	3.51±0.05	83.1%	38±0.8	16.9%	9.3

Table S4. TCSPC data fitting parameters.

The time-resolved PL traces were fitted using a convolution from the instrument response function (IRF) with a two-exponential differential equation (eq S1), and the average PL lifetimes were obtained from eq (S2), where τ_i represents the time component and A_i represents the amplitude.

$$\frac{dI}{dt} = -A_1 e^{-t/\tau_1} - A_2 e^{-t/\tau_2}$$
(S4)

$$\tau_{average} = \frac{A_1 \tau_1 + A_2 \tau_2}{A_1 + A_2}$$
(S5)

Figure S4. Transient absorption spectra for the (a) pristine (as-fabricated) MAPbI₃ film, (b) MAPbI₃ after scotch taping in vacuum, and (c) TA kinetics at 760 nm under excitation at 800 nm.

Figure S5. Transient absorption spectra for the TIPS-pentacene film (a) in vacuum and (b) in air under excitation at 650 nm. TA kinetics in vacuum and air at (c) 530 nm (T_1) and (d) 850 nm (^{1}TT).

References

- (1) Gao, Y. Mater. Sci. Eng. R Rep 2010, 68, 39.
- (2) Liu, F.; Shi, R.; Wang, Z.; Weng, Y.; Che, C.-M.; Chen, Y., Angew. Chem. 2019, 131, 11917.
- (3) Tauc, J.; Grigorovici, R.; Vancu, A. Phys. Status Solidi B 1966, 15, 627.
- (4) Wood, D. L.; Tauc, J. Phys. Rev. B 1972, 5, 3144.