Electronic Supplementary Information

Highly dispersed nickel nitride nanoparticles on nickel nanosheets as an active catalyst for hydrazine electrooxidation

Xi Lin, He Wen*, Deng-Xue Zhang, Guo-Xuan Cao and Ping Wang*

School of Materials Science and Engineering, Key Laboratory of Advanced Energy

Storage Materials of Guangdong Province, South China University of Technology,

Guangzhou 510641, P.R. China.

E-mails: mspwang@scut.edu.cn, mswenhe@mail.scut.edu.cn

Figure S1. (a) N_2 adsorption/desorption isotherms and (b) the corresponding pore size distribution of the hydrothermal and nitrided catalysts, respectively.

Figure S2. FE-SEM images of the Ni_3N/NF catalyst at different magnifications.

Figure S3. Computed density of states of Ni_3N . The Fermi level (E_F) is set to zero.

Figure S4. Comparison of the LSV curves of the Ni₃N/Ni/NF catalyst in an electrolyte with and without N_2H_4 · H_2O at a scan rate of 20 mV·s⁻¹.

Figure S5. (a,b) FE-SEM images, (c) TEM image and (d) SAED pattern of the post-used $Ni_3N/Ni/NF$ catalyst after 12 h of constant-current measurement.

Sample	Electrolyte	Electrocatalytic performance		
	[N ₂ H ₄] and [NaOH] (M)	j (mA·cm ⁻²)	E (V vs. RHE)	Reference
Ni _{0.6} Co _{0.4} /NF	0.5, 3.0	292	0.22	[1]
Ni-NSA/NF	0.5, 3.0	228	0.25	[2]
Cu film/Cu foil	0.2, 3.0	135	0.47	[3]
CoNi-S/NF	2.0, 0.1	118	1.0	[4]
Ni ₂ P/NF	0.1, 1.0	220	0.10	[5]
NiS ₂ /TiM	0.5, 1.0	300	0.22	[6]
Ni-Cu/Cu foil	0.1, 3.0	300	0.47	[7]
Ni _x P/NF (DP)	0.1, 1.0	580	0.30	[8]
Ni-B/NF	0.1, 1.0	340	0.30	[9]
Ni-Zn/NF	0.1, 1.0	225	0.30	[10]
Pd-porous Ni/NF	0.1, 1.0	450	0.30	[11]
Ni ₃ N/Ni/NF	0.5, 1.0	623	0.30	This work

Table S1. A comparison of catalytic properties of various catalysts towards hydrazine electrooxidation.

References

- 1 G. Feng, Y. Kuang, P. Li, N. Han, M. Sun, G. Zhang and X. Sun, *Adv. Sci.*, 2017, **4**, 1600179.
- 2 Y. Kuang, G. Feng, P. Li, Y. Bi, Y. Li and X. Sun, *Angew. Chem. Int. Ed.*, 2016, **55**, 693–697.
- 3 Z. Lu, M. Sun, T. Xu, Y. Li, W. Xu, Z. Chang, Y. Ding, X. Sun and L. Jiang, *Adv. Mater.*, 2015, **27**, 2361–2366.
- 4 L. Zhou, M. Shao, C. Zhang, J. Zhao, S. He, D. Rao, M. Wei, D. G. Evans and X. Duan, *Adv. Mater.*, 2017, **29**, 1604080.
- 5 C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A. M. Asiri and X. Sun, *Angew. Chem. Int. Ed.*, 2017, **56**, 842–846.
- 6 J. Wang, X. Ma, T. Liu, D. Liu, S. Hao, G. Du, R. Kong, A. M. Asiri and X. Sun, *Mater. Today Energy*, 2017, **3**, 9–14.
- 7 M. Sun, Z. Lu, L. Luo, Z. Chang and X. Sun, *Nanoscale*, 2016, **8**, 1479–1484.
- 8 H. Wen, L. Gan, H. Dai, X. Wen, L. Wu, H. Wu and P. Wang, *Appl. Catal. B: Environ.*, 2019, **241**, 292–298.
- 9 X. Wen, H. Dai, L. Wu and P. Wang, Appl. Surf. Sci., 2017, 409, 132–139.
- 10 L. Wu, H. Dai, X. Wen and P. Wang, *ChemElectroChem*, 2017, 4, 1944–1949.
- 11 L. Wu, X. Wen, H. Wen, H. Dai and P. Wang, J. Power Sources, 2019, 412, 71–77.