Supporting Information

Polypyrrole Nanostructures Modified with Mono- and Bimetallic Nanoparticles for Photocatalytic H₂ Generation

Xiaojiao Yuan¹, Diana Dragoe², Patricia Beaunier³, Daniel Bahena Uribe⁴, Laurence Ramos⁵, Maria Guadalupe Méndez-Medrano⁶, Hynd Remita^{1*}

¹ Laboratoire de Chimie Physique, UMR 8000 CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

² Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

³ Sorbonne Université, CNRS UMR-7197, LRS, 4 Place Jussieu 75005 Paris, France

⁴ Laboratorio Avanzado de Nanoscopía Electrónica, Centro de Investigación y de Estudios Avanzados Del I.P.N, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico

⁵ Laboratoire Charles Coulomb (L2C), Université de Montpellier, UMR 5221 CNRS,
34095 Montpellier, France

⁶ Laboratoire de Physique des Interfaces et des Couches Minces, UMR 7647 CNRS, École Polytechnique, 91120 Palaiseau, France

Figure S1. SEM images of PPy NSs.

Figure S2. EDS image of 0.05%Ni0.05%Pt-PPy

Figure S3. XPS spectra of wide region spectroscopy of PtNi-PPy-NSs.

precursors.									
Samples	0.2%Pt-PPy	Hydrogen	5%Ni-PPy	Hydrogen					
		(µmol/h/g)		(µmol/h/g)					
	Platinum(II)	1400	Nickel (II)	289					
	acetylacetonate		acetylacetonate						
	Potassium	398	Nickel formate	200					
	tetrachloroplatinate								

Table S1. Hydrogen production of 0.2%Pt-PPy and 5%Ni-PPy with different metallic

Figure S4. Hydrogen evolution of PtNi-PPy samples with same loading rate.

Figure S5. Hydrogen evolution of PtNi-PPy samples with different loading rates.

Table S2. Table 1. Comparison of this work with previously reported materials for H_2

generation

Photocatalyst	Scavenger	Cocatalyst	Light source	hydrogen	Reference
TiO ₂ /ALD-Pt	Ethanol	Pt	300 W Xe lamp	23 µL/h (AM 1.5)	J. Yoo, et al [1]
TiO ₂ /NiS	Methanol	NiS	350 W Xe lamp	655 μmol/h/g	F. Xu, et al [2]
nanofiber					
2%Au/TiO ₂	Methanol	Au	150 W CERAMICMetal-	500 μmol/h/g	F. Xu, et al [3]
			Halide Lamp		
Ag-TiO ₂ -	Methanol	Ag	300 W Xe lamp	129.5 μmol/h/g	F. Sheu, et al [4]
Graphene					
10%MoS ₂ /CdS	Acetic acid	MoS ₂	300 W Xe arc lamp	45 mmol/h/g	X. Yin, et al [5]
3%P3HT-g-C ₃ N ₄	S ²⁻ +SO2- 3		300 W Xe lamp	5700 μmol/h/g	X. Zhang, et al [6]
1%Pt/PTh-20	ascorbic acid	Pt	300 W Xe arc lamp	2190 µmol/h/g	X. Zong, et al [7]
C ₃ N ₄ -	TEA	Pt	300 W Xe lamp	320 µmol/h/g	Z. Xing, et al [8]
2%PEDOT-1%Pt					
Pt/5 wt % g-	TEOA	Pt	300 W Xe lamp	370 μmol/h/g	F. He, et al [9]
PAN/g-C ₃ N ₄					
0.1%PtNi-PPy	CH ₃ OH	Pt, Ni	300 W Xe lamp	664 μmol/h/g	X. Yuan, et al
					This work

Figure S6. Hydrogen evolution of PtNi-PPy samples with different mass ratio of Pt:Ni.

Reference:

[1] J. Yoo, R. Zazpe, G. Cha, J. Prikryl, I. Hwang, J.M. Macak, P. Schmuki, Uniform ALD deposition of Pt nanoparticles within 1D anodic TiO₂ nanotubes for photocatalytic H2 generation, Electrochemistry Communications, 86 (2018) 6-11.
[2] F. Xu, L. Zhang, B. Cheng, J. Yu, Direct Z-scheme TiO₂/NiS core–shell hybrid nanofibers with enhanced photocatalytic H₂-production activity, ACS Sustainable Chemistry & Engineering, 6 (2018) 12291-12298.

[3] C. Marchal, A. Piquet, M. Behr, T. Cottineau, V. Papaefthimiou, V. Keller, V. Caps, Activation of solid grinding-derived Au/TiO₂ photocatalysts for solar H₂ production from water-methanol mixtures with low alcohol content, Journal of catalysis, 352 (2017) 22-34.

[4] F.-J. Sheu, C.-P. Cho, Investigation of the appropriate content of graphene in AgTiO₂-graphene ternary nanocomposites applied as photocatalysts, International Journal of Hydrogen Energy, 42 (2017) 17020-17029.

[5] X.-L. Yin, L.-L. Li, W.-J. Jiang, Y. Zhang, X. Zhang, L.-J. Wan, J.-S. Hu, MoS₂/CdS nanosheets-on-nanorod heterostructure for highly efficient photocatalytic H₂ generation under visible light irradiation, ACS applied materials & interfaces, 8 (2016) 15258-15266.

[6] X. Zhang, B. Peng, S. Zhang, T. Peng, Robust wide visible-light-responsive photoactivity for H₂ production over a polymer/polymer heterojunction photocatalyst:

the significance of sacrificial reagent, ACS Sustainable Chemistry & Engineering, 3 (2015) 1501-1509.

[7] X. Zong, X. Miao, S. Hua, L. An, X. Gao, W. Jiang, D. Qu, Z. Zhou, X. Liu, Z.
Sun, Structure defects assisted photocatalytic H₂ production for polythiophene
nanofibers, Applied Catalysis B: Environmental, 211 (2017) 98-105.

[8] Z. Xing, Z. Chen, X. Zong, L. Wang, A new type of carbon nitride-based polymer composite for enhanced photocatalytic hydrogen production, Chemical Communications, 50 (2014) 6762-6764.

[9] F. He, G. Chen, Y. Yu, S. Hao, Y. Zhou, Y. Zheng, Facile approach to synthesize g-PAN/g-C₃N₄ composites with enhanced photocatalytic H_2 evolution activity, ACS applied materials & interfaces, 6 (2014) 7171-7179.