Long-Term Chemothermal Stability of Delithiated NCA in Polymer Solid-State Batteries

Supporting Information

Münir M. Besli,^{*a,b*} Camille Usubelli,^{*a,c*} Michael Metzger,^{*a*} Sondra Hellstrom,^{*a*} Sami Sainio,^{*d*} Dennis Nordlund,^{*d*} Jake Christensen,^{*a*} Gerhard Schneider,^{*b,e*} Marca M. Doeff,^{*f,**} Saravanan Kuppan^{*a,**}

^aRobert Bosch LLC, Research and Technology Center, Sunnyvale, California 94085, United States ^bDept. of Mech. Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany ^cInstitute of Physics and Chemistry of Materials of Strasbourg (IPCMS), UMR 7504 CNRS, University of Strasbourg, France

^dStanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States

^eMaterials Research Institute, Aalen University, Aalen 73430, Germany

^fLawrence Berkeley National Laboratory, Energy Storage and Distributed Resources Division, University of California, Berkeley, California 94720, United States

*(M.D.) E-mail mmdoeff@lbl.gov *(S.K.) E-mail saravanan.kuppan@us.bosch.com

Figure S1. (a) SEM image of a typical secondary NCA particle. (b) Higher magnification of the surface showing primary particle grains of about 500 nm diameter.

Figure S2. (a) and (b) Superimposed spectra of pristine nickel-rich oxides and nickel oxide (NiO) for TEY and FY mode, respectively. $L_{3, high}/L_{3, low}$ peak ratios are proportional to average oxidation states of nickel. (c) Nickel K-edge XANES spectra of pristine nickel-rich oxides and nickel NiO. With increasing oxidation state of nickel, a shift towards higher energy values is observed.

Figure S3. (a) Nickel K-edge XANES spectra for pristine NCA, $Li_{0.3}NCA$, and $Li_{0.3}NCA$ stored at 60 °C for various lengths of time. (b) Nickel K-edge XANES spectra for pristine NCA, $Li_{0.3}NCA$, and $Li_{0.3}NCA$ stored at 90 °C for various lengths of time.

Figure S4. Nickel K-edge spectra for $Li_{0.3}NCA$ in combination with (a) PEO, (b) $LiBF_4$, (c) LiTFSI, (d) PEO + $LiBF_4$, (e) PEO + LiTFSI, and (f) PCL stored at 80 °C for 7 days, 21 days and 35 days.

Nickel oxide	Calculated nickel valence (in fully lithiated state)
NiO	+2
NMC111	+2
NMC532	+2 2/5
NMC622	+2 2/3
NMC811	+2 7/8
NCA	+3

Table S1. Calculated nickel valence for different nickelates in the fully lithiated state, under

 the assumption, that cobalt is 3+ and manganese is 4+.

Combination	TEY derived	TEY	FY	FY	Bulk	Bulk
	apparent	derived	derived	derived	apparent	degree of
	oxidation	degree of	apparent	degree of	oxidation	aging
	state after 35	aging	oxidation	aging	state after	after 35
	days	after 35	state after	after 35	35 days	days
		days	35 days	days		
Li _{0.3} NCA only	3.38+	46%	3.39+	44%	3.67+	5%
+ PEO	2.41+	184%	2.70+	143%	3.14+	80%
+ PCL	3.18+	75%	3.29+	58%	3.34+	52%
+ LiBF ₄	3.49+	30%	3.55+	21%	3.68+	3%
+ LiTFSI	2.54+	165%	3.03+	96%	3.52+	25%
+ PEO +	3.24+	66%	3.29+	59%	3.30+	56%
LiBF ₄						
+ PCL +	3.46+	35%	3.52+	26%	3.57+	19%
LiBF ₄						
+ PEO +	2.86+	120%	3.13+	81%	3.21+	69%
LiTFSI						
Li _{0.3} NMC811	2.44+	180%	3.02+	98%	3.02+	98%
+ PCL						
Li _{0.3} NMC811	3.26+	62%	3.40+	43%	3.63+	10%
+ LiBF ₄						
Li _{0.3} NMC811	3.35+	50%	3.34+	51%	3.67+	4%
+ PCL +						
LiBF ₄						
Li _{0.3} NMC622	3.40+	43%	3.25+	64%	3.48+	31%
+ PCL						
Li _{0.3} NMC622	3.55+	21%	3.58+	17%	3.67+	4%
+ LiBF ₄						
Li _{0.3} NMC622	3.50+	28%	3.34+	51%	3.59+	16%
+ PCL +						
LiBF ₄						

Table S2. Apparent oxidation state and degree of aging in percent after storing samples for 35 days at 80 °C. Apparent oxidation state and degree of aging is shown for surface (TEY), subsurface (FY), and bulk.