Supplementary Information

Hydrophobic Titanium Doped Zirconium-based Metal Organic Framework for Photocatalytic Hydrogen Peroxide Production in Two-phase System

Xiaolang Chen,^a Yasutaka Kuwahara,^{abc} Kohsuke Mori,^{ab} Catherine Louis,^d and Hiromi Yamashita^{*ab}

^a Graduate School of Engineering, Osaka University, 2-1 Yamadaoka,

Suita, Osaka 565-0871, Japan.

E-mail: yamashita@mat.eng.osaka-u.ac.jp

^b Elements Strategy Initiative for Catalysts and Batteries (ESICB),

Kyoto University, Katsura, Kyoto 615-8520, Japan

- ^c JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- ^d Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7197, Laboratoire de

Réactivité de Surface, 4 Place Jussieu, Tour 43-33, 3^{ème} étage, Case 178, F-

75252 Paris, France

Characterization results

Fig. S1 N₂ adsorption/desorption isotherms at 77 K of (a) $Zr_{100-x}Ti_x$ -MOF and (b) OPA/Zr_{100-x}Ti_x-MOF.

Sample	$S_{BET}(m^2 \cdot g^{-1})^a$	d _p (nm) ^b	V _p (cm ³ ·g ⁻¹) ^c
Zr ₁₀₀ -MOF	648	0.65	0.32
Zr ₉₅ Ti ₅ -MOF	495	0.65	0.24
Zr _{92.5} Ti _{7.5} -MOF	439	0.60	0.20
Zr ₉₀ Ti ₁₀ -MOF	346	0.70	0.16
OPA/Zr ₁₀₀ -MOF	237	0.65	0.11
OPA/Zr ₉₅ Ti ₅ -MOF	108	1.00	0.05
OPA/Zr _{92.5} Ti _{7.5} -MOF	75	1.05	0.03
OPA/Zr ₉₀ Ti ₁₀ -MOF	25	1.15	0.01

Table S1. Structural parameters of different samples.

^{*a*}Surface area (S_{BET}) calculated by the BET method. ^{*b*}Average pore diameter (d_p) calculated using Saito Foley (SF) method. ^{*c*}Micropore volume (V_p) calculated using SF method (diameter < 2 nm).

Fig. S2. XPS spectra of the synthesized samples: P 2p of Zr-MOF and OPA/Zr₁₀₀-MOF.

Fig. S3. FT-IR spectra of (a) $Zr_{100-x}Ti_x$ -MOF and (b) OPA/ $Zr_{100-x}Ti_x$ -MOF.

Fig. S4. The XPS spectra of the synthesized samples: Zr 3d of Zr_{100} -MOF and OPA/Zr₁₀₀-MOF.

Fig. S5. (a, c, e, g) TG and (b, d, f, h) DTA profiles of Zr_{100} -MOF, OPA/ Zr_{100} -MOF, $Zr_{92.5}Ti_{7.5}$ -MOF and OPA/ $Zr_{92.5}Ti_{7.5}$ -MOF.

Calculation of the population of the alkylated clusters in OPA/Zr₁₀₀-MOF and OPA/Zr_{92.5}Ti_{7.5}-MOF:

TG-DTA measurements were performed to determine the amount of atoms alkylated by OPA in the clusters of OPA/ Zr_{100} -MOF and OPA/ $Zr_{92.5}Ti_{7.5}$ -MOF (Fig. S5).

For Zr_{100} -MOF (NH₂-UiO-66(Zr)), the unit cell is $Zr_6O_4(OH)_4$ -L₆, where L is 2-aminoterephthalic acid linker. After combustion, this unit cell is expected to yield 6ZrO₂. The theoretical ratio of weight of 6L (1075 g mol⁻¹) to 6ZrO₂ (739.32 g mol⁻¹) is equal to 1.45. In the TG-DTA pfofiles of Zr_{100} -MOF (Fig. S5a and b), the endothermal weight loss in region noted a-1 is attributed to desorption of H₂O. The exothermal weight loss in a-2 is attributed to the weight loss due the to combustion of the organic linkers during the decomposition of Zr_{100} -MOF into ZrO_2 (a-3), respectively. The experimental weight loss due to the combustion of the organic linkers (43.8 % in a-2) to 6ZrO₂ (31.7 % in a-3) was calculated to be 1.38, which is similar with the expected value calculated above (1.45).

For OPA/Zr₁₀₀-MOF, the unit cell can be expressed as $OPA_nZr_6O_4(OH)_4$ -L₆, where n is the average number of OPA that modify the clusters per unit cell. When combusted, assuming the monodentate species, 1 mol of this unit cell loses (179.1*6+334.5*n) g due to the combustion of the organic linkers and OPA (6 mol of L and n mol of OPA), and leaves 739.32 g due to residual 6ZrO₂. The weight loss due to the combustion of the organic linkers in OPA of OPA/Zr₁₀₀-MOF is 56.4 % (b-2 region in Fig. S5c). The weight of the residual 6ZrO₂ of

OPA/Zr₁₀₀-MOF is 34.2 % (b-3 region). Therefore, the ligand (linkers and OPA) content is 62.3% [56.4 %/(56.4 %+34.2 %)] in pure OPA/Zr₁₀₀-MOF. By comparing the ratios of these values with the theoretical values, n can be calculated as 0.436 for 1 mol of OPA/Zr₁₀₀-MOF according to the following equation:

 $(6L + nOPA + 6ZrO_2) * 62.3 \% = 6L + nOPA$

Thus, alkylated Zr atoms in the $Zr_6O_4(OH)_4$ -L₆ clusters of OPA/Zr₁₀₀-MOF is 7.3 % (0.436/6*100 %).

For $Zr_{92.5}Ti_{7.5}$ -MOF, the unit cell is $(Zr_{0.925}Ti_{0.075})_6O_4(OH)_4$ -L₆. After combustion, this unit cell is expected to yield $5.55ZrO_2+0.45TiO_2$. The theoretical ratio of weight of 6L (1075 g mol⁻¹) to ($5.55ZrO_2+0.45TiO_2$) (719.826 g mol⁻¹) is equal to 1.49. In the result of TG-DTA profiles for $Zr_{92.5}Ti_{7.5}$ -MOF (Fig. S5e and f), The exothermal weight loss in c-2 and residual c-3 were attributed to the weight loss due to the combustion of the organic linkers and weight of residual ZrO_2 and TiO_2 , respectively. The experimental ratio of weight loss due to the combustion of the organic linkers (49.8 %) to ($5.55ZrO_2+0.45TiO_2$) (35.9 %) was calculated to be 1.39, which is close to the expected value calculated above (1.49).

For OPA/Zr_{92.5}Ti_{7.5}-MOF, the unit cell can be expressed as $OPA_n(Zr_{0.925}Ti_{0.075})_6O_4(OH)_4$ -L₆. The weight losse due to combustion of organic linkers and OPA of OPA/Zr_{92.5}Ti_{7.5}-MOF is 60 % (d-2 region in Fig. S5g). Residual ZrO₂ and TiO₂ is 35% (d-3). Then, the ligand (linkers and OPA) content

is about 63.2 % [60 %/(60 %+35 %)]. Thus, n can be calculated as 0.483 for 1 mol of OPA/ $Zr_{92.5}Ti_{7.5}$ -MOF according to the following equation:

 $(6L + nOPA + 5.55ZrO_2 + 0.45TiO_2)$ * 63.2 % = 6L + nOPA

Only the Zr atoms was alkylated by the OPA, thus, alkylated Zr atoms in the $(Zr_{0.925}Ti_{0.075})_6O_4(OH)_4$ -L₆ clusters of OPA/Zr_{92.5}Ti_{7.5}-MOF is 8.7 % (0.483/5.55*100 %).

Fig. S6. The digital picture of two-phase system composed of BA/water containing (a) hydrophilic $Zr_{92.5}Ti_{7.5}$ -MOF in aqueous phase and (b) hydrophobic OPA/ $Zr_{92.5}Ti_{7.5}$ -MOF in BA phase.

Fig. S7. H_2O_2 production utilizing Zr_{100} -MOF and OPA/ Zr_{100} -MOF in single-phase system composed of an acetonitrile solution (5.0 mL) of BA (1.0 mL).

Fig. S8. Benzaldehyde concentration of (a) hydrophilic $Zr_{100-x}Ti_x$ -MOF and (b) hydrophobic OPA/Zr_{100-x}Ti_x-MOF in two-phase system composed of benzyl alcohol (5.0 mL) and water (2.0

mL) catalyzed by 5.0 mg of photocatalysts under photoirradiation ($\lambda > 420$ nm) after 3h reaction.

Fig. S9. (a) The XRD patterns and (b) FTIR spectra of $Zr_{92.5}Ti_{7.5}$ -MOF and OPA/ $Zr_{92.5}Ti_{7.5}$ -MOF after recycling tests, compared with the samples before reaction.