Supporting Information

Engineered Self-Supported Electrocatalytic Cathode and Dendrite-Free Composite Anode Based on 3D Double-Carbon Hosts for Advanced Li-SeS₂ Batteries

MeiWang^a, Yi Guo^a, BoyaWang^a, Hang Luo^a, XuemeiZhang^a, Qian Wang^a, Yun Zhang^a, Hao Wu^a*,HuakunLiu^b and ShixueDou^b

^aDepartment of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, P. R. China.

^bInstitute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2500, Australia.

Figure S1 (a-c) Digital images of commercial MF (a), as-prepared CF@CNTs (b) and CF@CNTs/CoS₂ hybrid (c). (d) Digital images of the rolling up process of the 3D flexible CF@CNTs/CoS₂ \subset SeS₂ electrode, which still maintains an integral morphology without any structural cracking.

Figure S2 (a) EDS mappings of C, Co, S, and N elements of $CF@CNTs/CoS_2$. (b, c) FESEM images of $CF@CNTs/CoS_2$.

Figure S3 Nitrogen adsorption/desorption isotherms and pore-size distributions (inset) of CF, CF@CNTs and CF@CNTs/CoS₂ with the BET and BJH methods.

Figure S4 TGA curves of CF@CNTs/CoS₂ \subset SeS₂ electrode materials with different areal SeS₂ loadings of 5.6, 7.3 and 12.3 mg cm⁻², respectively.

Figure S5 (a, b) Typical FESEM images of $CF@CNTs/CoS_2 \subset SeS_2$ electrode with the areal SeS_2 loading of 5.6 mg cm⁻² and (c) EDS mappings of C, Co, S, and Se elements of $CF@CNTs/CoS_2 \subset SeS_2$.

Figure S6 UV-vis absorption spectra of Li₂Sen (4 \le n \le 8) solutions with exposure to CF@CNTs/CoS₂ and CF@CNTs

Figure S7 FESEM images of CF@CNTs/CoS₂ after adsorption of Li_2Se_n (a-b) and Li_2S_n (c-d).

Figure S8 (a) Nyquist plots of $CF@CNTs \subseteq SeS_2$ and $CF@CNTs/CoS_2 \subseteq SeS_2$ as cathode coupled with Li anode. (b) Nyquist plots of the symmetric cells with CF@CNTs or $CF@CNTs/CoS_2$ as both the working and counter electrodes.

Figure S9 Comparison of the cycling stabilities of CF@CNTs \subset SeS₂ and CF@CNTs/CoS₂ \subset SeS₂ electrodes at 1.0 A g⁻¹ for 200 cycles.

Figure S10 (a) Schematic diagram of soft-packaged Li-SeS₂ battery; (b, c) Vivid photographs demonstration of the flexibility of the as-fabricated soft-packaged Li-SeS₂ battery based on the CF@CNTs/CoS₂ \subset SeS₂ cathode bending at 180° and after nearly 180°. The soft-packaged Li-SeS₂ battery can light up 33 red LEDs (nominal voltage of 2.0-2.2 V) in the flat and bent states.

Figure S11 Electrocatalytic effects of electrode materials verified from the CV profiles: differential CV curves of (a) $CF@CNTs \subseteq SeS_2$ and $CF@CNTs/CoS_2 \subseteq SeS_2$; The baseline potentials and baseline current densities in (a, b) are defined as the values before the redox peaks, where the variation on current density is the smallest, namely dI/dV = 0.

Figure S12 CV curves of the (a) CF@CNTs/CoS₂ \subset SeS₂ and (b) CF@CNTs \subset SeS₂ electrodes at various scan rates. (c-d) Plots of the CV peak current intensities of (c) peak 1 (S₈ \rightarrow Li₂S₄), (d) peak 3 (Li₂S₄ \rightarrow Li₂S; Li₂Se₄ \rightarrow Li₂Se), and (e) peak 4 (Li₂S \rightarrow Li₂S₈) versus the square root of scan rates.

Figure S13 The typical voltage profiles of Cu foil and CF@CNTs electrodes at a current density of 1.0 mA cm⁻² with a cycling capacity of 1.0 mAh cm⁻² after 10 (a), 30 (b), 60 (c), and 90 (d) cycles.

Section SII. Supporting Tables

Samples	Element (wt.%)			
	C	Ν	Н	
MF	32.16	41.86	25.98	
CF@CNTs	94.84	5.16		

 Table S1 Elemental analysis results of MF and CF@CNTs.

Table S2	Square	resistance	of	samples	
----------	--------	------------	----	---------	--

Samples	CF	CF@CNTs	CF@CNTs/CoS ₂
Resistance (Ω/□)	24.88	0.65	0.38

Supplementary References

[S1] J. Hu, H. Zhong, X. Yan and L. Zhang, Applied Surface Science. 2018, 457, 705-711.

[S2] H. N. Fan, S. L. Chen, X. H. Chen, Q. L. Tang, A. P. Hu, W. B. Luo, H. K. Liu and S. X. Dou, Advanced Functional Materials. 2018, 28, 1805018.

[S3] J. Zhang, Z. Li and X. W. D. Lou, Angew Chem Int Ed Engl. 2017, 56, 14295-14300.

[S4] Z. Li, J. Zhang, B. Y. Guan and X. W. D. Lou, Angew Chem Int Ed Engl. 2017, 56, 16003-16007.

[S5] F. Sun, H. Cheng, J. Chen, N. Zheng, Y. Li and J. Shi, ACS Nano. 2016, 10, 8289-8298.

[S6] Z. Zhang, S. Jiang, Y. Lai, J. Li, J. Song and J. Li, Journal of Power Sources. 2015, 284, 95-102.

[S7] Y. Wei, Y. Tao, Z. Kong, L. Liu, J. Wang, W. Qiao, L. Ling and D. Long, Energy Storage Materials. 2016, 5, 171-179.

[S8] Z. Li, J. t. Zhang, H. B. Wu and X. W. D. Lou, Advanced Energy Materials. 2017, 7, 1700281.

[S9] Y. Yang, X. J. Hong, C. L. Song, G. H. Li, Y. X. Zheng, D. D. Zhou, M. Zhang, Y. P. Cai and H. X. Wang, Journal of Materials Chemistry A. 2019, 7, 16323-16329.