Supporting Information

LiSi₃As₆ and Li₂SiAs₂ with flexible SiAs₂ polyanions: Synthesis, structure, bonding, and ionic conductivity

Justin Mark,^{a,b} Kathleen Lee,^{c,#} Maxwell A. T. Marple,^d Shannon Lee,^{a,b} Sabyasachi Sen,^d Kirill Kovnir ^{a,b,*}

^a Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA

^b Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA

^c Department of Chemistry, University of California, Davis, Davis, CA 95616, USA

^d Department of Materials Science and Engineering, University of California, Davis, Davis, CA 95616, USA

* Corresponding author, e-mail: <u>kovnir@iastate.edu</u>

[#] Current Address: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena CA 91109, USA

Figure S1. DSC measurements for LiSi₃As₆ (top) and Li₂SiAs₂ (bottom) with heating (orange) and cooling (blue) curves.

Figure S2. Powder diffraction pattern of a post-DSC sample of LiSi₃As₆. Theoretical pattern of SiAs₂ is shown as reference in blue, while Si peaks are labeled with star.

Figure S3. SEM images of a synthesized sample of LiSi₃As₆ mounted in epoxy (top/middle) and corresponding EDXS spectrum (bottom).

	LiSi3As6	Li ₂ SiAs ₂	
Space group	<i>Cmce</i> (no. 64)	<i>I</i> 4 ₁ / <i>acd</i> (no. 142)	
λ (Å)	Μο-Κα: 0.71073		
$T(\mathbf{K})$	296(2)	90(2)	
<i>a</i> (Å)	14.244(2)	12.563(4)	
<i>b</i> (Å)	11.247(2)		
<i>c</i> (Å)	10.757(1)	19.390(6)	
$V(\text{\AA}^{-3})$	1723.3(4)	3060(2)	
Ζ	8	32	
ρ (g•cm ⁻³)	4.17	3.33	
μ (mm ⁻¹)	23.33	17.52	
heta (°)	$2.99 < \theta < 27.49$	$3.11 < \theta < 33.25$	
Data / param.	1029/50	1467/48	
R_1	0.042	0.020	
wR_2	0.088	0.034	
Goodness-of-fit	1.03	1.10	
Diff. peak/hole (e·Å ⁻³)	1.33/-1.41	0.73/-0.68	

Table S1. Single crystal data collection and refinement parameters for LiSi₃As₆ and Li₂SiAs₂.

Table S2. Atomic coordinates for LiSi₃As₆ and Li₂SiAs₂.

Atom	Wyckoff Position	x/a	y/b	z/c	$U_{ m eq}({ m \AA}^2)$		
LiSi ₃ As ₆							
As1	16g	0.13830(5)	0.16836(7)	0.08910(7)	0.0132(2)		
As2	8 <i>e</i>	1⁄4	0.4312(1)	1/4	0.0148(3)		
As3	16g	0.08817(5)	0.31838(7)	0.93863(7)	0.0135(2)		
As4	8 <i>f</i>	0	0.9372(1)	0.2811(1)	0.0133(3)		
Si1	8 <i>f</i>	0	0.0518(3)	0.0944(3)	0.0126(6)		
Si2	16g	0.1232(1)	0.3027(2)	0.2603(2)	0.0131(5)		
Li1	8 <i>d</i>	0.218(2)	1/2	0	0.041(6)		
Li ₂ SiAs ₂							
As1	32g	0.28410(2)	0.21850(2)	0.12773(2)	0.00529(5)		
As2	16d	1/2	1/4	0.97912(2)	0.00481(6)		
As3	16e	1⁄4	0.43770(2)	0	0.00445(6)		
Si1	32g	0.38023(4)	0.33463(5)	0.05665(3)	0.0046(1)		
Li1	16f	0.0939(3)	0.1561(3)	1/8	0.012(1)		
Li2	16f	0.1557(4)	0.4057(4)	1/8	0.015(1)		
Li3	32g	0.3778(3)	0.0961(3)	0.0340(2)	0.0137(8)		

LiSi ₃ As ₆		Li ₂ SiAs ₂		
Atoms	Distance (Å)	Atoms	Distance (Å)	
Si1-Si1	2.341(6)	Si1-As1	2.3424(8)	
Si1-As1	2.367(2)	Si1-As1	2.3597(8)	
Si1-As4	2.387(3)	Si1-As2	2.3778(7)	
Si2-As1	2.392(2)	Si1-As3	2.3579(8)	
Si2-As2	2.316(2)	Li1-As1	2.516(3)	
Si2-As3	2.405(2)	Li2-As3	2.727(3)	
Si2-As4	2.359(2)	Li3-As3	2.641(4)	
As1-As3	2.445(1)			
As3-As3	2.512(2)			
Li1-As3	2.83(2)			

Table S3. Selected interatomic distances in LiSi₃As₆ and Li₂SiAs₂.

Figure S4. Nyquist plots of the impedance of Li₂SiAs₂ pellet measured at different temperatures.

Figure S5. A representative fit for the Cole-Cole plot (red line) at 47°C. The small semicircle at 2 MHz is attributed to bulk conductive processes while the larger semicircle between 2 kHz and 200 Hz is from conductive processes across grain boundaries. The equivalent circuit used for fitting at all temperatures is composed of two parallel R-CPE circuits in series to represent the bulk and grain boundary contributions. The contribution for the electrode was modelled with a parallel R-CPE circuit, however there are not enough data points at low frequency to provide any meaningful or accurate estimates of the resistance or capacitance. At temperatures below 57°C the electrode contribution is not observable within the frequency range of the impedance measurement and was not included in the fitting procedure.