Electronic Supplementary Information

Thiostannate Coordination Transformation-Induced Self-crosslinking Chalcogenide Aerogel with Local Coordination Control and Effective Cs⁺ Remediation Functionality

Yeo Kyung Kang,[‡]^a Heehyeon Lee,^{‡bc} Thanh Duy Cam Ha,^d Jong Kook Won,^a Hongil Jo,^e Kang Min Ok,^e Sangdoo Ahn,^a Byungman Kang,^f Kyunghan Ahn,^d Youngtak Oh,^{*b} and Myung-Gil Kim^{*d}

^a Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea

^b Center for Environment, Health, and Welfare, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea

^c Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea

^d School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

^e Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea

^f Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea

[‡]Y. K. Kang and H. Lee contributed equally to this work

Email of corresponding (*) authors: ytoh@kist.re.kr and myunggil@skku.edu

Single crystal X-ray diffraction analysis of Na₄Sn₂S₆·5H₂O

The crystal was grown by slow diffusion of methanol into 100 mg/ml aqueous solution of $Na_4Sn_2S_6\cdot5H_2O$ at room temperature. Single crystal X-ray diffraction data for the $Na_4Sn_2S_6\cdot5H_2O$ were collected at room temperature using a Bruker D8 QEUST diffractometer equipped with a graphite-monochromated Mo K α radiation. Colorless octahedron-like crystal with the size of 0.376 mm × 0.443 mm × 0.464 mm was selected to data collection. The data were integrated using the program SAINT,¹ and the absorption correction was made through the program SADABS.² An initial structure solution was obtained using SHELXS-2013³ and further refinement was performed via SHELXL-2013,⁴ implemented in the program WinGX-2014.⁵ The crystallographic information and selected bond lengths for $Na_4Sn_2S_6\cdot5H_2O$ are listed in Tables S1–S2, respectively.

Figure S1. PXRD analysis of TAC-1 and its Xerogel counterpart.

Figure S2. BET surface area measurement and BJH pore size distribution of TAC-1, TAC-2, TAC-3, and TAC-4.

Figure S3. Effect of surface tension (vacuum drying) on macrostructure of TAC-1. (a) volume shrinkage of gel (b) FE-SEM analysis of TAC-1 xerogel.

Figure S4. EDS mapping analysis of (a) TAC-1 (b) TAC-2 (c) TAC-3 (d) TAC-4.

Figure S5. ¹¹⁹Sn NMR analysis of (a) SnCl₂ in DMSO-*d*6 / deionized water, (b) Na₄Sn₂S₆·5H₂O in deionized water.

Figure S6. Solid state ¹¹⁹Sn NMR of TAC-1, TAC-1 precursor, and SnS₂ reference material.

Figure S7. Calculated and experimental powder X-ray diffraction patterns for $Na_4Sn_2S_6\cdot 5H_2O$.

Table S1. Stoichiometric ratio of TACs through pyrolytic elemental analysis (EA)* and energy dispersive x-ray spectroscopy (EDS)

		Sn	S	Ν	С
TAC-1	EA	1.0	2.3	0.6	2.8
	EDS	1.0	1.9	-	-
TAC-2	EA	1.0	2.4	0.6	1.5
	EDS	1.0	1.8	-	-
TAC-3	EA	1.0	2.4	0.6	1.1
	EDS	1.0	1.7	-	-
TAC-4	EA	1.0	2.3	0.4	N/A
	EDS	1.0	1.9	-	-
*.1 .1.0/ 6.0					<u> </u>

*the weight % of Sn was evaluated based on the sum of all other elements (S, N, C, H, and O) in chalcogel through pyrolytic elemental analysis

Table S2.	Crystal data and	structure refinement	for Na ₄ Sn ₂ S ₆ ·5H ₂ O
-----------	------------------	----------------------	---

Formula weight	611.78		
Temperature	300(2) K		
Wavelength	0.71073 A		
Crystal system, space group	Tetragonal, P 4 ₁ 2 ₁ 2		
	$a = 8.44260(10) \text{ Å} \qquad \alpha = 90^{\circ}$		
Unit cell dimensions	$b = 8.44260(10)$ Å $\beta = 90^{\circ}$		
	$c = 23.3145(5) \text{ Å} \qquad \gamma = 90^{\circ}$		
Volume	1661.80(5) Å ³		
Z, Calculated density	4, 2.445 g/cm ³		
Absorption coefficient	3.862 mm ⁻¹		
F(000)	1160		
Crystal size	0.464 x 0.443 x 0.376 mm		
Theta range for data collection	2.566 to 28.329°		
Limiting indices	-11<=h<=11, -11<=k<=11, -31<=l<=31		
Reflections collected / unique	45537 / 2069 [<i>R</i> (int) = 0.0266]		
Completeness to theta = 25.242	99.70%		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2069 / 8 / 100		
Goodness-of-fit on F^2	1.351		
Final R indices [I>2sigma(I)]	$R_1 = 0.0113$, $wR_2 = 0.0279$		
R indices (all data)	$R_1 = 0.0113$, $wR_2 = 0.0279$		
Absolute structure parameter	0.016(5)		
Extinction coefficient	0.0157(3)		
Largest diff. peak and hole	0.463 and -0.359 e Å ⁻³		

Table S3. Selected bond len	າgths (Å) for Na₄Sn₂S ₆ ·5H₂O
-----------------------------	--

	Sn(1)–S(3)	2.3355(6)	
	Sn(1)–S(1)	2.3504(6)	
	Sn(1)–S(2)	2.4435(6)	
	Sn(1)–S(4)	2.4560(6)	
	Na(1)–O(1)	2.306(3)	
	Na(1)–O(2)	2.342(3)	
	Na(1)–S(3)#1	2.8392(17)	
	Na(1)–S(1)	2.8663(16)	
	Na(1)–S(4)#2	3.2434(17)	
	Na(2)–O(1)	2.378(3)	
	Na(2)–O(2)	2.414(3)	
	Na(2)–O(3)	2.542(2)	
	Na(2)–S(3)#3	2.9731(15)	
	Na(2)–S(3)#2	2.9949(16)	
	Na(2)–S(2)#4	3.1439(16)	
Symmetry transformations used to generate equivalent atoms:			

#1 x+1/2,-y+1/2,-z+3/4 #2 -y+3/2,x+1/2,z+1/4 #3 y+1,x,-z+1 #4 -y+3/2,x-1/2,z+1/4

	Cs	Sn
	ppm	ppm
The solution before Cs+ adsorption	79.8	-
The solution after Cs+ adsorption	46.8	-

Table S4. ICP-MS analysis of TAC-3 in Cs⁺ solution before and after Cs⁺ adsorption

below detection limit (<0.1ppm)

References

1. *SAINT: Area-Detector Integration Software*, Siemens Industrial Automation, Inc.; Madison: 1996.

2. SADABS: Area-Detector Absorption Correction, Siemens Industrial Automation, Inc.: Madison: 1995.

3. Sheldrick, G. M., *SHELXS-2013—A Program for Automatic Solution of Crystal Structures*. University of Göttingen: Göttingen, Germany: 2013.

4. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta Cryst. 2015, 71, 3-8.
5. Farrugia, L. J., WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849-854.