Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

A Controllable Strategy for the Self-Assembly of WM Nanocrystals/Nitrogen-Doped

Porous Carbon Superstructure (M = O, C, P, S, and Se) for Sodium and Potassium

Storage

Xiaojuan Jiao^{ac}, Xiaojie Liu^{ac}, Beibei Wang^{bc*}, Gang Wang^{bc}, Hui Wang^{ac*}

^aKey Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of

Education), College of Chemistry & Materials science, Northwest University, Xi'an 710127,

PR China

^bState Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, PR China

^cShaanxi Joint Lab of Graphene (NWU), Xi'an 710127, PR China

*Corresponding author:

Tel.: +86 029 8836 3115

Fax: +86 029 8830 3798

E-mail address: huiwang@nwu.edu.cn (H. Wang), beibeiwang@nwu.edu.cn

Figure S1 SEM images of SiO₂@C solid spheres.

Figure S2 TEM images of the morphology changes of the W-PDA superstructure from $SiO_2@C$ solid spheres during the whole assembly process.

Figure S3 SEM images of the W-PDA superstructure using SiO₂@C solid spheres as the

blocks.

Figure S4 SEM and SEM-EDS element mapping images of the WO₂/N-PC superstructure.

Figure S5 SEM and SEM-EDS element mapping images of the WSe₂/N-PC superstructure.

Figure S6 SEM images of (a and b) W-PDA precursor without adding SiO₂@C blocks, (c and d) WO₂/N-C microsphere.

Figure S7 SEM, TEM, and SAED images of WSe₂/N-C microsphere.

Figure S8 XPS spectra of WSe₂/N-PC: (a) survey spectrum, (b) C 1s spectrum, (c)W4f spectrum, (d) Se 3d spectrum, and (e) N 1s spectrum.

Figure S9 (a) XRD pattern; (b) SEM image; (c and d) TEM images and (e) EDS element mapping images of WP/N-PC superstructure.

Figure S10 XPS spectra of WP/N-PC: (a) survey spectrum, (b) C 1s spectrum, (c) W4f spectrum, (d) P 2p spectrum, and (e) N 1s spectrum.

Figure S11 (a) XRD pattern; (b) SEM image; (c and d) TEM images and (e) EDS element mapping images of WC-W₂C/N-PC superstructure.

Figure S12 XPS spectra of WC-W₂C/N-PC: (a) survey spectrum, (b) C 1s spectrum, (c) W4f

spectrum.

Figure S13 (a) XRD pattern; (b) SEM image; (c) TEM images; (d) SAED pattern and (e)

TEM element mapping images of WS_2/N -PC superstructure.

Figure S14 XPS spectra of WS₂/N-PC: (a) survey spectrum, (b) C 1s spectrum, (c) W4f

spectrum, (d) S 2p spectrum.

Figure S15 Electrochemical characterizations of SIBs: (a) CV profiles of WSe₂/N-C electrode at a scan rate of 0.2 mV s⁻¹; (b) Discharge and charge profiles of WSe₂/N-C electrode.

Table 1 Electrochemical performance comparision of this work versus WSe₂-based anode materials with different structures for SIBs.

Materials	Current	Specific capacity, cycle	Ref.
	density	number	
WSe ₂ -N/PC	0.1 A g ⁻¹	390 mAh g ⁻¹ , 200 cycles	This work
superstructure	0.2 A g ⁻¹	316 mAh g ⁻¹ , 400 cycles	
	0.8 A g ⁻¹	184 mAh g ⁻¹ , 400 cycles	
WSe ₂ -15-PInanosheets	0.03 A g ⁻¹	238 mAh g ⁻¹ , 100 cycles	14
Bulk WSe ₂	0.1 A g ⁻¹	190 mAh g ⁻¹ , 30 cycles	17
Nanostructured WSe ₂ /C	0.2 A g ⁻¹	270 mAh g ⁻¹ , 50 cycles	29
WSe ₂ -G	0.1 A g ⁻¹	303 mAh g ⁻¹ , 80 cycles	37
WSe ₂ onions	0.1 A g ⁻¹	383 mAh g ⁻¹ , 40 cycles	38

Figure S16 The relationship between Z' and $\omega^{-1/2}$ in the low frequency region of WSe₂/N-PC and WSe₂/N-C electrodes after 3 cycles for SIBs.

Figure S17 Sodium storage behaviors of WSe₂/N-C: (a) CV curves at different scan rates from 0.2 to 2.0 mV s⁻¹; (b) Log i vs. log v plots at oxidation and reduction state; (c) Capacitive- and diffusion-controlled contribution to charge storage at 0.2 mV s⁻¹; (d) Normalized contribution ratio of capacitive- and diffusion-controlled capacities at different scan rates.

Figure S18 Electrochemical characterizations of PIBs: (a) CV profiles of WSe₂/N-C electrode at a scan rate of 0.2 mV s⁻¹; (b) Discharge and charge profiles of WSe₂/N-C electrode.

Figure S19 The relationship between Z' and $\omega^{-1/2}$ in the low frequency region of WSe₂/N-PC and WSe₂/N-C electrodes after 3 cycles for PIBs.

Figure S20 Potassium storage behaviors of WSe₂/N-C: (a) CV curves at different scan rates from 0.2 to 2.0 mV s⁻¹; (b) Log i vs. log v plots at oxidation and reduction state; (c) Capacitiveand diffusion-controlled contribution to charge storage at 0.2 mV s⁻¹; (d) Normalized contribution ratio of capacitive- and diffusion-controlled capacities at different scan rates.

Figure S21 TEM image of WSe₂/N-PC electrode after rate performance for potassium storage.