Anchoring MOF-derived CoS₂ on Sulfurized Polyacrylonitrile Nanofibers for High

Areal Capacity Lithium Sulfur Batteries

Amir Abdul Razzaq^{a,b}, Xietao Yuan^{a,b}, Yujie Chen^{a,b}, Jiapeng Hu^{a,b}, Qiaoqiao Mu^{a,b}, Yong Ma^{a,b},

Xiaohui Zhao^{a,b,*}, Lixiao Miao^c, Jou-Hyeon Ahn^d, Yang Peng^{a,b} and Zhao Deng^{a,b,*}

^aSoochow Institute for Energy and Materials Innovations, College of Energy, Soochow University,

Suzhou 215006, China

^bKey Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu

Province, Soochow University, Suzhou 215006, China

^cHaike Research Institute, Haike Group, Dongying 257000, China

^dDepartment of Materials Engineering and Convergence Technology, Gyeongsang National

University, 501 Jinju-daero, Jinju 52828, Republic of Korea

Corresponding authors*

Tel: +86-512-6716-7407; E-mail: zhaoxh@suda.edu.cn

Tel: +86-512-6716-7407; E-mail: zdeng@suda.edu.cn

Fig. S1 Photographs of the flexible CoS₂-SPAN-CNT.

Fig. S2 XRD patterns of ZIF-67@PAN-CNT and Co₂S-SPAN-CNT.

Fig. S3 FE-SEM images of (a) electrospun PAN-CNT and (b) SPAN-CNT.

Sample	Sulfur loading (mg cm ⁻²)	Thickness (μm)	Electrolyte amount (µl)
CoS ₂ -SPAN-CNT	5.9	97	150
CoS ₂ -SPAN-CNT	4.9	90	120
CoS ₂ -SPAN-CNT	2.8	82	70
CoS ₂ -SPAN-CNT	2.4	77	60
CoS ₂ -SPAN-CNT	1.7	72	45
CoS ₂ -SPAN-CNT	0.7	64	20
SPAN-CNT	2.4	294	60
CoS ₂ -SPAN	2.4	95	60
SPAN	2.4	302	60

Table S1. Electrode thickness and amount of electrolyte for composites with different sulfur loading.

				Table S2. BFT
Material	Specific Surface Area (m ² g ⁻¹)	Pore Volume (cm ³ g ⁻¹)	Average Pore Size (nm)	analyse s of CoS ₂ -
SPAN-CNT	27.3	0.08	16.6	SPAN-
CoS ₂ -SPAN-CNT	17.8	0.08	17.4	SPAN- - CNT.

Fig. S4 The thickness comparison of CoS_2 -SPAN-CNT and SPAN-CNT at specific sulfur loadings.

Fig. S5 XPS survey spectrum of CoS₂-SPAN-CNT.

Table S3. ICP results of the CoS₂-SPAN-CNT and CoS₂-SPAN.

Material	Co wt%
CoS ₂ -SPAN	5.7
CoS ₂ -SPAN-CNT	4.3

Sample	Total S wt%	C wt%	N wt%	S wt% from SPAN	S wt% from CoS ₂	
SPAN	42.5	41.4	14.4	42.5	-	
SPAN-CNT	39.9	43.3	13.5	39.9	-	
CoS ₂ -SPAN	44.6	42.2	13.8	38.4	6.2	
CoS ₂ -SPAN- CNT	43.2	38.7	11.3	38.5	4.7	

 Table S4. Elemental analysis of various composites.

Fig. S6 Cyclic voltammetry profiles of (a) CoS₂-SPAN-CNT, (b) SPAN-CNT, (c) CoS₂-SPAN, and (d) SPAN.

Material	Electric conductivity (S/cm)			
SPAN	N/A			
CoS ₂ -SPAN	0.4×10^{-4}			
SPAN-CNT	1.6×10^{-3}			
CoS ₂ -SPAN-CNT	1.9×10^{-2}			

Table S5. Electric conductivity measurements of SPAN, SPAN-CNT, and CoS₂-SPAN-CNT.

Fig. S7 EIS spectra of (a) CoS₂-SPAN-CNT, (b) SPAN-CNT, (c) CoS₂-SPAN, and (d) SPAN.

Calculated Impedance Data	CoS ₂ -SPAN-CNT	SPAN-CNT	CoS ₂ -SPAN	SPAN
R ₁ (Ω)	2.157	4.723	7.776	8.453
R ₂ (Ω)	180.9	277.2	1244	2549
R ₃ (Ω)	27.24	75.62	167.3	946.2

Table S6. EIS fitting data of CoS_2 -SPAN-CNT, SPAN-CNT, CoS_2 -SPAN and SPAN.

Fig. S8 Volumetric capacities of the CoS₂-SPAN-CNT and control samples at 0.2 C.

Fig. S9 Rate capability of SPAN-CNT.

Fig. S10 Ex-situ FT-IR plots of the fresh and cycled CoS₂-SPAN-CNT.

Fig. S11 The proposed overall electrochemical lithiation/delithiation processes for CoS₂-SPAN-CNT.

Material	Current Collector	Free- standing	Sulfur loading (mg cm ⁻²)	Areal Capacity (mA h cm ⁻²)	Ref
SPAN4	Al foil	None	0.4	-	[1]
S/PAN/KB	Carbon fiber paper	None	4.4	-	[2]
SPAN	Al foil	None	0.7	1.0	[3]
S/Microporous carbon polyhedrons/PAN	Al foil	None	1.0	-	[4]
CMK-3/S@PAN	Al foil	None	2.1	-	[5]
S@pPAN	Al foil	None	2.5	-	[6]
pPAN/SeS ₂	Al foil	None	7.9	4.5	[7]
Te _{0.04} S _{0.96} @pPAN	Al foil	None	3.1	-	[8]
Se _{0.06} SPAN	Al foil	None	3.1	-	[9]
S/PAN/MWCNT	None	flexible	3.0	-	[10]
S/PAN/GO	None	flexible	2.5	-	[11]
SPAN-CNT20	None	flexible	1.1	-	[12]
S/DPAN/KB	None	flexible	1.5	1.7	[13]
SPAN/CNT-12	None	flexible	2.0	-	[14]
CoS ₂ -SPAN-CNT	None flexil	flexible	4.6	6.5	This
			5.9	8.1	Work

Table S7. Comparison of CoS_2 -SPAN-CNT with previously reported SPAN cathodes in terms of sulfur loading and areal capacity.

- 1. S. Wei, L. Ma, K. E. Hendrickson, Z. Tu and L. A. Archer, J. Am. Chem. Soc., 2015, **137**, 12143-12152.
- H. Sohn, M. L. Gordin, M. Regula, D. H. Kim, Y. S. Jung, J. Song and D. Wang, *J. Power Sources*, 2016, 302, 70-78.
- 3. M. Frey, R. K. Zenn, S. Warneke, K. Müller, A. Hintennach, R. E. Dinnebier and M. R. Buchmeiser, ACS Energy Lett., 2017, **2**, 595-604.
- 4. Y.-Z. Zhang, Z.-Z. Wu, G.-L. Pan, S. Liu and X.-P. Gao, *ACS App. Mater. Interfaces*, 2017, **9**, 12436-12444.
- C. Hu, H. Chen, Y. Shen, D. Lu, Y. Zhao, A.-H. Lu, X. Wu, W. Lu and L. Chen, *Nat. commun.*, 2017, 8, 479.
- Z.-Q. Jin, Y.-G. Liu, W.-K. Wang, A.-B. Wang, B.-W. Hu, M. Shen, T. Gao, P.-C. Zhao and Y.-S. Yang, Energy Storage Mater., 2018, 14, 272-278.
- 7. Z. Li, J. Zhang, Y. Lu and X. W. D. Lou, *Sci. Adv.*, 2018, **4**, 1687.
- S. Li, Z. Han, W. Hu, L. Peng, J. Yang, L. Wang, Y. Zhang, B. Shan and J. Xie, *Nano Energy*, 2019, **60**, 153-161.
- 9. X. Chen, L. Peng, L. Wang, J. Yang, Z. Hao, J. Xiang, K. Yuan, Y. Huang, B. Shan and L. Yuan, *Nat. commun.*, 2019, **10**.
- 10. A. Mentbayeva, A. Belgibayeva, N. Umirov, Y. Zhang, I. Taniguchi, I. Kurmanbayeva and Z. Bakenov, *Electrochim. Acta*, 2016, **217**, 242-248.
- 11. H. Peng, X. Wang, Y. Zhao, T. Tan, Z. Bakenov and Y. Zhang, *Polymers*, 2018, **10**, 399.
- 12. A. A. Razzaq, Y. Yao, R. Shah, P. Qi, L. Miao, M. Chen, X. Zhao, Y. Peng and Z. Deng, *Energy Storage Mater.*, 2019, **16**, 194-202.
- S. Kalybekkyzy, A. Mentbayeva, M. V. Kahraman, Y. Zhang and Z. Bakenov, J. Electrochem. Soc., 2019, 166, A5396-A5402.
- 14. X. Wang, Y. Qian, L. Wang, H. Yang, H. Li, Y. Zhao and T. Liu, *Adv. Funct. Mater.*, 2019, **29**, 1902929.

References