## **Surpporting information**

## In-situ engineered ZnS-FeS heterostructures in N-doping carbon nanocages accelerating polysulfides redox kinetics for lithium sulfur batteries

Wenda Li, Zhijiang Gong, Xiujuan Yan, Dezhu Wang, Jing Liu, Xiaosong Guo, Zhonghua Zhang\* and Guicun Li\*

College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

E-mail: zhangzh@qust.edu.cn; guicunli@qust.edu.cn



Fig. S1. The schemical reaction between mental ion and TA.



Fig. S2. The SEM images of Fe/ZIF-8 with different Fe:Zn ratio (a)-(d) 1:2; (b)-(e) 1:1; (c)-(f) 2:1.



Fig. S3. The XRD patrons of Fe/ZIF-8 samples.



Fig. S4. The XRD patrons of Fe/ZIF-8 and TA-ZIF-8 nanocages.



Fig. S5. The EDS mapping images of ZnS-FeS/NC samples for C and N elements



Fig. S6. The XRD patterns of ZnS/NC and FeS/NC composites.

| Table S1. | Co and I | Fe content i | in ZnS | -FeS@NC | sample a | nalvzed b | v ICP technic                     | ue. |
|-----------|----------|--------------|--------|---------|----------|-----------|-----------------------------------|-----|
|           |          |              |        | ()      |          |           | j · · · · · · · · · · · · · · · · |     |

| Sample     | Zn (wt.%) | Fe (wt.%) |
|------------|-----------|-----------|
| ZnS-FeS@NC | 20.3      | 9.6       |

Table S2. C and N content in ZnS-FeS@NC sample analyzed by EA technique.

| Sample     | C (wt.%) | N (wt.%) |
|------------|----------|----------|
| ZnS-FeS@NC | 44.2     | 6.4      |



Fig. S7. The XPS survey of FeS-ZnS/NC samples.



Fig. S8. The SEM images of S@ZnS-FeS/NC composite.



Fig. S9. The XRD pattern of S@ZnS-FeS/NC composite.



Fig. S10. The TGA and DSC curves of the S@ZnS-FeS@NC composite.



Fig. S11. TEM image of the S@ZnS-FeS@NC and the corresponding EDS elemental mapping images.



Fig. S12. Digital photos of the visual Li-S cell with S@ZnS/NC cathode and S@FeS/NC at different time.



Fig. S13. The CV curves of the S@ZnS-FeS/NC cathode for the first five cycles at a scan rate of 0.1 mV

 $s^{-1}$ 



Fig. S14. Fe2p XPS spectrum of ZnS-FeS/NC and ZnS-FeS/NC+Li<sub>2</sub>S<sub>6</sub>.



Fig. S15. N1s XPS spectrum of ZnS-FeS/NC and ZnS-FeS/NC+Li<sub>2</sub>S<sub>6</sub>.



Fig. S16. The band alignment of the ZnS and FeS.



Fig. S17. The charge and discharge profiles at different current densities of S@ZnS/NC and S@FeS/NC composites cathode.

Table S3. Performance comparison between S@ZnS-FeS/NC and sulfur electrodes based on metal sulfides in recent publications.

|   | 1                                              |                                  |                   |
|---|------------------------------------------------|----------------------------------|-------------------|
| 1 | S@ZnS-FeS/NC                                   | 738 mA h g <sup>-1</sup> 4.0 C   | This              |
|   |                                                |                                  | work              |
| 2 | S/CoS <sub>2</sub>                             | 580 mA h g <sup>-1</sup> 2.0 C   | Ref. <sup>1</sup> |
| 3 | S/CuS                                          | 568 mAh g <sup>-1</sup> at 3.0 C | Ref. <sup>2</sup> |
| 4 | NiS@C-HS                                       | 718 mAh g <sup>-1</sup> at 4.0 C | Ref. <sup>3</sup> |
| 5 | rGO–VS <sub>2</sub> /S                         | 616 mAh g <sup>-1</sup> 3.0 C    | Ref. <sup>4</sup> |
| 6 | MnS nanocrystal decorated N/S codoped graphene | 572 mAh g <sup>-1</sup> 4.0 C    | Ref. <sup>5</sup> |
| 7 | S/AHCNS-SnS <sub>2</sub>                       | 717.6 mAh g <sup>-1</sup> 2.0 C  | Ref. <sup>6</sup> |

| 8  | Co <sub>3</sub> S <sub>4</sub> @S    | 617 mAh g <sup>-1</sup> 4.0 C | Ref. <sup>7</sup> |
|----|--------------------------------------|-------------------------------|-------------------|
| 9  | NbS <sub>2</sub> @S@I-Doped Graphene | 603 mAh g <sup>-1</sup> 5.0 C | Ref. <sup>8</sup> |
| 10 | C@WS <sub>2</sub> /S                 | 448 mAh g <sup>-1</sup> 3.0 C | Ref. <sup>9</sup> |



Fig. S18. The pristine and after discharge cross-sectional SEM image of the sulfur/carbon (a)-

(b) and S@ZnS-FeS/NC (c)-(d) cathodes with low sulfur loading.

## **Supporting Reference**

- 1. J. Zhou, N. Lin, W. I. Cai, C. Guo, K. Zhang, J. Zhou, Y. Zhu and Y. Qian, *Electrochim. Acta*, 2016, **218**, 243-251.
- 2. H. Li, L. Sun, Y. Zhao, T. Tan and Y. Zhang, Appl. Surface Sci., 2019, 466, 309-319.
- C. Ye, L. Zhang, C. Guo, D. Li, A. Vasileff, H. Wang and S.-Z. Qiao, *Adv. Funct. Mater.*, 2017, 27, 1702524.
- 4. Z. Cheng, Z. Xiao, H. Pan, S. Wang and R. Wang, *Adv. Energy Mater.*, 2018, **8**, 1702337.
- 5. Z. Li, R. Xu, S. Deng, X. Su, W. Wu, S. Liu and M. Wu, *Appl. Surface Sci.*, 2018, **433**, 10-15.
- 6. X. Li, L. Chu, Y. Wang and L. Pan, Mater. Sci. Eng.: B, 2016, 205, 46-54.
- J. Pu, Z. Shen, J. Zheng, W. Wu, C. Zhu, Q. Zhou, H. Zhang and F. Pan, *Nano Energy*, 2017, 37, 7-14.
- 8. Z. Xiao, Z. Yang, L. Zhang, H. Pan and R. Wang, *ACS Nano*, 2017, **11**, 8488-8498.

9. T. Lei, W. Chen, J. Huang, C. Yan, H. Sun, C. Wang, W. Zhang, Y. Li and J. Xiong, *Adv. Energy Mater.*, 2017, **7**, 1601843.