Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Fig. S1 (a) SEM, (b) TEM and (c) HAADF-STEM and corresponding elemental mapping images of the PdRu NAs.

Fig. S2 XPS survey pattern of the PdRuBP NAs.

Fig. S3 TEM image of the Pd black.

Fig. S4 (a) SEM, (b) TEM, (c) HAADF-STEM and corresponding elemental mapping images and (d) XRD pattern of the PdRuB NAs.

Fig. S5 CV curves of the catalysts in a 0.5 M H_2SO_4 solution with a scan rate of 50 mV s⁻¹.

Fig. S6 TEM images of the PdRuBP NAs after electrocatalytic stability testing.

Table S1 The comparisons of FAOR performance for the PdRuBP NAs and some other reportedPd-based electrocatalysts.

Catalysts	Electrolyte	Scan rate (mV s ⁻¹)	Mass activity (mA μg _{Pd} ⁻¹)	Ref.
PdRuBP NAs	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	50	1.71	This work
PdRu nanospine assemblies	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	50	1.10	1
Pd/NP-Coal-CFs(DCD/TPP)	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	50	0.537	2
CuPd@Pd tetrahedra	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	50	0.502	3
Twisted PdCu nanochains	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	50	1.108	4
Core-shell Pd-P@Pt nanoparticles	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	50	0.502	5
Pd/PCNTs	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	50	0.695	6
PdBi nanodot	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	50	1.629	7
Pd-Ni ₂ P/C -30%	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	50	1.425	8
Pd-P NNs	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	50	1.505	9
Pd-P ₈₅ /C	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	50	0.877	10
PdNi/RGO	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	50	0.604	11
3D super-branched PdCu	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	50	0.808	12
flower-like Au@AuPd core-shell nanocrystals	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	50	1.250	13
Pd ₅₁ Cu ₄₉ alloy	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	50	0.517	14
Cu ₃ PdN nanoparticles	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	50	0.870	15

References

- H. Wang, Y. Li, C. Li, Z. Wang, Y. Xu, X. Li, H. Xue and L. Wang, J. Mater. Chem. A, 2018, 6, 17514-17518.
- M. Lou, R. Wang, J. Zhang, X. Tang, L. Wang, Y. Guo, D. Jia, H. Shi, L. Yang, X. Wang, Z. Sun, T. Wang and Y. Huang, ACS Appl. Mater. Interfaces, 2019, 11, 6431-6441.
- Y. Chen, Y. Yang, G. Fu, L. Xu, D. Sun, J.-M. Lee and Y. Tang, J. Mater. Chem. A, 2018, 6, 10632-10638.
- L. Y. Zhang, Y. Gong, D. Wu, G. Wu, B. Xu, L. Bi, W. Yuan and Z. Cui, *J. Colloid Interf. Sci.*, 2019, **537**, 366-374.
- 5. J. Xu, M. Zhao, S.-i. Yamaura, T. Jin and N. Asao, J. Appl. Electrochem., 2016, 46, 1109-1118.
- Z. Xin, S. Wang, J. Wang, X. Huang, X. Ji, Y. Yao and L. Shao, *Electrochem. Commun.*, 2016, 67, 26-30.
- H. Xu, K. Zhang, B. Yan, J. Wang, C. Wang, S. Li, Z. Gu, Y. Du and P. Yang, J. Power Sources, 2017, 356, 27-35.
- 8. J. Chang, L. Feng, C. Liu, W. Xing and X. Hu, Angew. Chem., 2014, 53, 122-126.
- 9. J. Zhang, Y. Xu and B. Zhang, Chem. Commun., 2014, 50, 13451-13453.
- G. Yang, J. Yang, L. Li, P. Lv, Y. Sun, Z. Yuan and J. Yang, *ChemistrySelect*, 2018, 3, 10768-10773.
- D. Bin, B. Yang, F. Ren, K. Zhang, P. Yang and Y. Du, J. Mater. Chem. A, 2015, 3, 14001-14006.
- M. Iqbal, C. Li, J. H. Kim, S. M. Alshehri, T. Nakayama and Y. Yamauchi, *Chem. Eur. J.*, 2017, 23, 51-56.
- D.-N. Li, A.-J. Wang, J. Wei, Q.-L. Zhang and J.-J. Feng, *Int. J. Hydrogen Energy*, 2017, 42, 19894-19902.
- 14. F. Yang, Y. Zhang, P.-F. Liu, Y. Cui, X.-R. Ge and Q.-S. Jing, *Int. J. Hydrogen Energy*, 2016, 41, 6773-6780.
- 15. J. Jia, M. Shao, G. Wang, W. Deng and Z. Wen, Electrochem. Commun., 2016, 71, 61-64.