Supporting Information

Branched Polymer-incorporated Multilayered Heterostructured Photoanode: Precisely Tuning Directional Charge Transfer Toward Solar Water Oxidation

Zhi-Quan Wei, Xiao-Cheng Dai, Shuo Hou, Yu-Bing Li, Ming-Hui Huang, Tao Li, Shuai Xu, Fang-

Xing Xiao*

College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian

Province 350108, China.

E-mail: fxxiao@fzu.edu.cn

Table of contents

										Р	age	NO.
Experin	nental	Sectio	n									S3
Figure	S1.	Zeta	potential	s, TEM	images,	UV-vis	absorption	spectrum	and	PL	of	MoS ₂
QDs												
Figure	S	2.	XRD	patterns	of	$T(BM)_1$,	T(BM) ₄ ,	T(BM)6	and	, ,	T(BM) ₈

QDs		S5								
Figure	S2.	XRD	patterns	of	T(BM) ₁	,	T(BM) ₄ ,	T(BN	$(M)_6$ and	T(BM) ₈
				S6						
Figure		S3.	Raman		spectrun	n	of	f	T(BM) ₂	and
TNTAs							S8			
Figure	S4.	DRS and	l Kubelka	a-Munk	plot	of	T(BM) _n	(n=1,	2, 4,	8) and
TNTAs				S9						
Figure		S5.	XPS		results		of		T(BM) ₂	and
TNTAs							S10			
Figure	S6.	TNTAs	with	cor	responding		EDS	and	elemental	mapping
result				S12						
Figure	S7.	TB_2	with	corre	esponding		EDS	and	elemental	mapping
result				S13						
Figure	S8.	TM_2	with	corre	esponding		EDS	and	elemental	mapping
result				S14						
Figure		S	9.		EDS			resu	lt	of
T(BM) ₂								S1	5	
Figure	S1). TE	M and	d	HRTEM		images	of	TNTA	s and
T(BM) ₂					S16					
Figure		S11.		TEM			EDS		result	of
T(BM) ₂								S17		
Figure S1	2. Depos	sition amount	t of MoS ₂ QE	Os on th	e TNTAs/B	PEI	substrate			S18
Figure	S13	. Optin	nize tl	he	di-layer		of	T(BM) _n	(TNTAs/	(BPEI/MoS ₂
QDS) _{n)}				S19						
Figure	S14	. PEC	perfor	rmance	of		T(BM) ₂	differ	ent La	yer-by-Layer

time			S20)					
Figure	S15.	UV-vis	spectra of	f Au	nanoparti	icle a	nd HA	uCl ₄ (ir	DMF)
			S21						
Figure	S16.	UV-vis	spectra	of	BPEI	soluti	on (ir	n DI	water)
				S22					
Figure	S17. I-t	and LSV	results of o	different	stacking fa	ashion c	of BPEI a	and MoS ₂	QDs on
TNTAs.		S23							
Figure S	18. Differe	nt stacking m	odel of BPEI an	d MoS ₂ Q	Ds on TNTA	s			S24
Figure	S19.	I-t and	LSV resul	ts of	different	photoa	nodes ur	nder visi	ble light
irradiatio	on		S25						
Figure	S20.	EIS	analysis	of	differe	ent	photoanode	es in	dark
condition	1			S20	5				
Figure	S21. I-	t and LS	SV results	of T(P	$E-M)_n$ (PE=	=BPEI,	PAH, P	DDA; n=	1) (under
AM1.5G	i)	S27	7						
Figure	S22. Pho:	tocurrent of	$T(BM)_2$ und	er conti	nuous simul	ated sola	ar light ir	radiation (in Na ₂ SO ₄
solution)	S29								
Figure S	23. I-t resu	lts of T(BM) ₂	and T(BM) ₂ aft	er dippin	g in DI H ₂ O fo	or 1 h and	2 h (under A	AM1.5G)	S30
Figure	S24. X	PS of T(BM) ₂ before	and	after conse	ecutive	irradiatio	n for 2	2h under
AM1.5	G								
Figure	S25. FT	TIR of T	(BM) ₂ before	and	after conse	ecutive	irradiatio	n for 2	2h under
AM1.5	G								
Table	S1.	Peak po	sitions wit	h co	rresponding	funct	ional g	roups c	of three
samples.			S7						
Table	S2.	Chemical	bond	specie	es <i>vs</i> .	B.E.	for	T(BM)	and
TNTAs.				S1	1				
Table		S3.	R _{ct}		values		of		different
photoanodes									
Table		S4.	Chemica	al	struct	ure	of		different
polyelectrolytes									
Referen	ces								\$32

S2

Experimental Section

1. Materials

Titanium sheet (50 mm × 20 mm × 0.1 mm, 99.9%), Deionized water (DI H₂O, Millipore, 18.2 M Ω ·cm resistivity), Graphite sheet (50 mm × 20 mm × 0.1 mm, 99.6%), Ethylene glycerol (CH₂OH)₂, Ammonium fluoride (NH₄F), Hydrogen fluoride (HF), Nitric acid (HNO₃), Sodium molybdate dehydrate (Na₂MoO₄·2H₂O), Dibenzyl disulfide (C₁₄H₁₄S₂), Ethanol (CH₃CH₂OH), Branched polyethylenimine (BPEI, average M_w=25 kDa, Sigma-Aldrich), Poly (diallyldimethylammonium chloride) solution (PDDA, average M_w=200~350 kDa, Sigma-Aldrich), Poly (allylamine hydrochloride) (PAH, average M_w=17.5 kDa, Sigma-Aldrich), Poly (sodium 4-styrenesulfonate) (PSS, average M_w=70 kDa, Sigma-Aldrich). All the chemicals are analytic grade and used as received without further purification.

2. Preparation of TNTAs substrate

Ti foil was first thoroughly sonicated in acetone, ethanol and DI H₂O for 15 min, respectively. Then, Ti sheets were immersed in a mixed solution of HF-HNO₃-H₂O with volume ratio of 1 : 4 : 5 for 20 s, washed by DI H₂O and dried with a gentle N₂ stream. Anodization was carried out under ambient conditions at 50 V for 2 h with ca. 3 cm separation distance between the working (Ti foil) and counter electrode (graphite). The electrolyte consists of 0.3 wt % of NH₄F (0.6 g) in ethylene glycol (196 mL) and DI H₂O (4 mL). After the first-step anodization, the as-obtained TiO₂ layer was removed from Ti foil by sonication in ethanol for 5 min, washed by DI H₂O and dried with a N₂ stream. The second anodization was performed at 50 V for 30 min to produce the TNTAs. Similarly, the resulting TNTAs were also washed by DI H₂O, dried with a N₂ stream and finally calcined at 450 °C for 3 h in air with a heating rate of 5 °C min⁻¹.

3. Preparation of MoS₂ quantum dots (QDs)

In brief, 0.4 g of Na₂MoO₄·2H₂O was dissolved in 30 mL of DI H₂O with ultrasonication for 20 min. Then, 0.38 g of dibenzyl disulfide and 30 mL of ethanol were added to the solution followed by ultrasonication for 30 min. The mixture was then transferred into a 100 mL Teflon-line stainless steel autoclave and maintained at 220 °C for 18 h. Upon cooling naturally to room temperature, mother liquor was drained and new DI H₂O was added into the autoclave. The resulting suspension was then centrifuged for 60 min at 12 000 rpm to separate the supernatant and centrifugate. The light brown supernatant was MoS₂ QDs and the centrifugate was the composition of MoS₂ QDs and micro-sized particles.

4. Preparation of TB₂ and TM₂ photoanodes

TNTAs substrate was directly dipped into BPEI (0.5 mg/mL, 0.5 M NaCl, pH=10) or MoS₂ QDs aqueous solution (25 mg/L) for 1 min and then washed with DI H₂O for 1 min and dried with a stream of N₂. Based on which, TB₂ or TM₂ heterostructure can thus be fabricated by repeating the above procedure.

5. Preparation of T(BM)₂ photoanodes with different deposition time

TNTAs substrate was firstly dipped into positively charged BPEI aqueous solution (0.5 mg/mL, 0.5 M NaCl, pH=10) for 5 (or 1 min), washed with DI H₂O for 1 min and dried with a stream of N₂. Subsequently, BPEI-modified TNTAs was dipped into negatively charged MoS₂ QDs aqueous solution (25 mg/L) for 5 (or 1 min), after which the sample was washed with DI H₂O for 1 min and dried with a stream of N₂. The assembly bilayer was controlled to be two.

6. Preparation of T(PE-M)_n (PE=PAH, PDDA, n=1) photoanodes

TNTAs substrate was firstly dipped into PAH (or PDDA) aqueous solution (0.5 mg/mL, 0.5 M NaCl, pH=10) for 1 min, washed with DI H₂O for 1 min and dried with a stream of N₂. Subsequently, PAH or PDDA-modified TNTAs was dipped into negatively charged MoS₂ QDs aqueous solution (25 mg/L) for 1 min, after which the sample was washed with DI H₂O for 1 min and dried with a stream of N₂.

7. Preparation of T(B-PSS)₂ photoanodes

TNTAs substrate was firstly dipped into BPEI aqueous solution (0.5 mg/mL, 0.5 M NaCl, pH=10) for 1 min, washed with DI H₂O for 1 min and dried with a stream of N₂. Subsequently, BPEI-modified TNTAs was dipped into PSS (0.5 mg/mL, 0.5 M NaCl, pH=10) aqueous solution for 1 min, after which the sample was washed with DI H₂O for 1 min and dried with a stream of N₂. The assembly bilayer was controlled to be two.

8. Preparation of Au nanoparticle-BPEI clusters^{S1}

A solution of BPEI (25000 Da, 10 mg/mL in DMF) and a solution of HAuCl₄ (10 mg/mL in DMF) were prepared. 400 μ L of each solution were added into 10 mL of DMF in a small glass vial and the mixture was immersed in an oil bath at 150 °C (corresponding to an internal temperature of ~130 °C (after 20 min) and stirred for 20 min at 700 rpm and finally cooled to room temperature.

Fig. S1. (a) Zeta potentials and (b) TEM image with corresponding size distribution histogram in the inset, (c) UV-vis absorption spectrum with photograph and band-gap energy determination in the inset, and (d) PL spectra of MoS_2 QDs aqueous solution under different excitation wavelength.

Note: Two peaks at 209 and 230 nm were observed in the UV-vis absorption spectrum of MoS_2 QDs aqueous solution (**Fig. S1c**), which is attributed to the excitonic features of MoS_2 QDs.^{S2} Band-gap energy of MoS_2 QDs is calculated to be 4.92 eV, larger than that of monolayer MoS_2 (1.9 eV) and bulk MoS_2 (1.2 eV), and similar to that of monolayered MoS_2 QDs (4.96 eV), attributable to the quantum size effect.^{S3}

Fig. S1d shows the PL spectra of MoS₂ QDs aqueous solution excited by different wavelength (300~500 nm), wherein a red shift in the luminescence emission was observed with increasing the excitation wavelength (λ_{ex}), and its intensity decreases rapidly with increasing the emission wavelengths (450 to 600 nm). This suggests polydispersity of MoS₂ QDs, consistent with previous reports.^{S4, 5}

Fig. S2. XRD patterns of $T(BM)_n$ (n=1, 2, 4, 6, 8) multilayered photoanodes.

Peak position (cm ⁻¹)	$T(BM)_2$	TNTAs		
3430	N-H and O-H stretching vibration	O-H stretching vibration		
2920	C-H stretching vibration	N.D.		
2860	C-H stretching vibration	N.D.		
1630	N-H and O-H deformation vibration	O-H deformation vibration		
1390	Ti-O stretching vibrations	Ti-O stretching vibrations		
1110	C-N stretching vibrations	N.D.		
823	Ti-O stretching vibrations	Ti-O stretching vibrations		

Table S1. Peak position with corresponding functional groups for $T(BM)_2$ and TNTAs.

N.D.: Not Detected.

Fig. S3. Raman spectra of $T(BM)_2$ and TNTAs.

Fig. S4. DRS results of $T(BM)_n$ (n=1, 2, 4, 8) and TNTAs with corresponding photographs and bandgap determination in the inset.

Fig. S5. (a) Survey spectra of (I) $T(BM)_2$ and (II) TNTAs, high-resolution (b) Ti 2p and (c) O 1s spectra of (I) $T(BM)_2$ and (II) TNTAs, and high-resolution (d) S 2p spectrum of $T(BM)_2$.

Element	$T(BM)_2$	TNTAs	Chemical Bond Species
Ti 2p _{3/2}	458.70	458.40	Anatase (4+)
Ti 2p _{1/2}	464.45	464.10	Anatase (4+) ^{S6}
O 1s A	529.95	529.65	Lattice Oxygen
O 1s B	531.60	531.45	Ti-OH ^{S7}
N 1s A	398.50	N.D.	-NH-/-NH ₂ -
N 1s B	399.60	N.D.	C-N
N 1s C	400.20	N.D.	-NH3 ⁺
Mo 3d _{5/2}	228.87	N.D.	Mo ³⁺
Mo 3d _{3/2}	232.40	N.D.	Mo ³⁺
S 2p _{3/2}	161.88	N.D.	S ²⁻
S 2p _{1/2}	163.10	N.D.	S ²⁻

Table S2. Chemical bond species vs. B.E. for different photoelectrodes.

N.D.: Not Detected.

Note: Some typical chemical bond species, such as carboxylate, lattice oxygen, and Ti-OH in $T(BM)_2$ show concurrent substantial shifts in B.E., thus once again indicating the pronounced interaction among ultra-thin BPEI layer, MoS₂ QDs and TNTAs substrate.

Fig. S6. (a & b) FESEM images of TNTAs with corresponding (c & d) elemental mapping and (e) EDS results.

Fig. S7. (a) Top-view and cross-section FESEM images of TB_2 with corresponding (b-e) elemental mapping and (f) EDS results.

Fig. S8. (a) Top-view and cross-section FESEM images of TM_2 with corresponding (b-f) elemental mapping and (g) EDS results.

Fig. S9. EDS result of T(BM)₂ heterostructure.

Fig. S10. (a & c) TEM and (b& d) HRTEM images of (a & b) TNTAs and (c & d) T(BM)₂.

Note: Successful deposition of MoS_2 QDs on the T(BM)₂ can also be verified by **Fig. S6d** which exhibits the typical (103) crystal plane of MoS_2 QDs with distinct lattice fringe of 0.24 nm.

Fig. S11. TEM EDS result of $T(BM)_2$ heterostructure.

Fig. S12. (a) On-off transient photocurrent and (b) LSV results of $T(B-XM)_2$ (X=12.5, 25, 37.5, 50 mg/L) prepared by utilizing different concentration of MoS₂ QDs under simulated solar light irradiation (AM1.5G).

Fig. S13. (a) On-off transient photocurrent and (b) LSV results of $T(BM)_n$ (n=1, 2, 4, 6, 8) multilayered heterostructures under solar light irradiation (AM1.5G).

Fig. S14. (a) On-off transient photocurrent and (b) LSV results of $T(BM)_2$ with different deposition time for each assembly bilayer under simulated solar light irradiation (AM1.5G).

Note: The different deposition time at each LbL assembly bilayer means that TNTAs substrate was first dipped into positively charged BPEI aqueous solution for 1 min (or 5 min) and then washed with DI H₂O for 1 min. Subsequently, BPEI-modified TNTAs was dipped into negatively charged MoS₂ QDs aqueous solution for 1 min (or 5 min), after which the sample was washed with DI H₂O for 1 min.

Fig. S15. UV-vis absorption spectra of HAuCl₄ solution before and after adding BPEI.

Note: Color of tetrachloroauric acid solution changes from paint yellow to wine after adding the BPEI, indicating HAuCl₄ precursor has been completely reduced to Au nanoparticles and this can also be corroborated by the UV-vis absorption spectrum of the HAuCl₄/BPEI mixed solution with the presence of a characteristic SPR peak of Au NPs. The results strongly evidence the intrinsic strong reducing capability of BPEI.^{S1} That is, BPEI is able to mediate the hole transfer.

Fig. S16. UV-vis absorption spectrum of BPEI aqueous solution.

Fig. S17. Schematic illustration of TNTAs/BPEI/MoS₂ QDs ternary photoanodes with different stacking fashion.

Fig. S18. (a) On-off transient photocurrent and (b) LSV results of $T(BM)_2$ with different stacking fashion under simulated solar light irradiation (AM1.5G).

Fig. S19. (a) On-off transient photocurrent and (b) LSV results of TB₁, TM₁ and TNTAs under visible light (λ >420 nm) irradiation.

Note: Blank TNTAs shows very low photocurrent under visible light irradiation and this is not caused by the band-gap-photoexcitation but rather the intrinsic defect of TNTAs.

Fig. S20. EIS results of different photoanodes in dark.

Table S3. Fitted EIS results of different photoanodes under simulated solar light irradiation based on the equivalent circuit.

Photoanodes	R _s /ohm	R _{ct} /ohm	CPE /(F·cm ⁻²)
T(BM) ₂	6.337	786	2.443E-5
TB ₂	33.52	1211	0.0004959
TM_2	50.33	2963	0.0004082
TNTAs	59.88	3037	0.0004022
Ti(BM) ₂	5.827	21560	3.1595E-5

Note: As shown in **Table S3**, R_{ct} values were obtained by fitting the EIS results according to a simple equivalent circuit composed of a series of resistance (**Fig. 4d**, inset). Apparently, T(BM)₂ demonstrated the smallest R_{ct} value in comparison with other counterparts, indicative of the lowest charge transfer resistance in the interfacial region.

Fig. S21. (a) & (b) On-off transient photocurrent and LSV results (scan rate: 5 mV s⁻¹, bias voltage: 0.61 V vs. RHE) of T(PE-M)_n (PE=BPEI, PAH, PDDA; n=1) in Na₂SO₄ aqueous solution (pH=6.69) under simulated solar light irradiation (AM1.5).

Table S4. Molecular structures of different polyelectrolytes.

Fig. S22. Photocurrent of $T(BM)_2$ under continuous simulated solar light (AM1.5) irradiation in Na₂SO₄ aqueous solution (pH=6.69). (bias voltage: 0.61 V vs. RHE)

Fig. S23. On-off transient photocurrent of $T(BM)_2$ and $T(BM)_2$ after dipping in DI H₂O for 1 h and 2 h in Na₂SO₄ aqueous solution (pH=6.69) under simulated solar light irradiation (AM1.5).

Fig. S24. High-resolution N 1s spectra of $T(BM)_2$ before and after consecutive simulated solar irradiation for 2 h.

Note: N element in the high-resolution N 1s spectrum of $T(BM)_2$ after consecutive simulated solar irradiation for 2 h shows no apparent B.E. shifts, i.e., ca. 0.16 eV for -NH/-NH₂ (i.e. 398.34 eV vs. 398.5 eV), 0.1 eV for N-C (i.e. 399.50 eV vs. 399.6 eV) and 0.02 eV for -NH₃⁺ (i.e. 400.22 eV vs. 400.20 eV) as compared to freshly prepared $T(BM)_2$.

Fig. S25. FTIR spectra of T(BM)₂ before and after consecutive simulated solar irradiation for 2 h.

References

- S1. F. Kretschmer, U. Mansfeld, S. Hoeppener, M. D. Hager and U. S. Schubert, *Chem Commun* (*Camb*), 2014, **50**, 88-90.
- S2. V. Chikan and D. F. Kelley, J. Phys. Chem. B, 2002, 106, 3794-3804.
- S3. H. Huang, C. Du, H. Shi, X. Feng, J. Li, Y. Tan and W. Song, *Part. Part. Syst. Charact.*, 2015, 32, 72-79.
- S4. D. Gopalakrishnan, D. Damien and M. M. Shaijumon, ACS Nano, 2014, 8, 5297-5303.
- S5. Y. Wang and Y. Ni, Anal. Chem., 2014, 86, 7463-7470.
- S6. S. Tazuke, S. Kurihara, H. Yamaguchi and T. Ikeda, J. Phys. Chem, 1987, 91, 249-251.
- S7. J. Li, S. Tang, L. Lu and H. C. Zeng, J. Am. Chem. Soc., 2007, 129, 9401-9409.