Electronic Supplementary Information (ESI)

The main factor to improve the performance of CoSe₂ for photocatalytic CO₂ reduction: element doping or phase transformation

Yong Xu, ab Jiang Mo, a Guanqun Xie, a Xiaoxia Wang, *a and Shujiang Ding*b

^aSchool of Materials Science and Engineering, Dongguan University of Technology,

Dongguan 523808, China.

^bDepartment of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an,

710049, P.R. China

*Corresponding Author E-mail: wangxx@dgut.edu.cn; dingsj@mail.xjtu.edu.cn

Fig. S1. TGA curves of c-CoSe₂ and o-CoSe₂/N. The experimental conditions are as follows: the heating rate of 10 $^{\circ}$ C/min under N₂ flow.

The TGA curve of c-CoSe₂ shows distinct three steps of weight loss. 4.6 wt% of c-CoSe₂ was lost from room temperature to 280 °C, which was mainly due to the evaporation of adsorbed water and free DETA. The second stage of weight loss was brought about by the decomposition of DETA intercalated in the nanosheet structure, where 4.4 wt% weight was lost between 330 °C and 480 °C. After that, the weight of c-CoSe₂ began to drop rapidly because of the thermal decomposition of the sample. However, the weight of o-CoSe₂/N declined slowly before 500 °C and it may be caused by the removal of water and DETA in o-CoSe₂/N during the process of phase change.

Fig. S2. FTIR spectra of of c-CoSe₂ and o-CoSe₂/N.

Fig. S3. The comparison of (111) and (120) diffraction peaks between $o-CoSe_2/N$ and pristine $o-CoSe_2$ in selected XRD patterns.

Fig. S4. N₂ adsorption-desorption isotherms of c-CoSe₂ along with corresponding pore size distribution.

Fig. S5. N₂ adsorption-desorption isotherms of o-CoSe₂/N along with corresponding pore size distribution.

Fig. S6. High resolution XPS of N 1s for $o-CoSe_2/N$.

Fig. S7. ¹H NMR spectra of TEOA, photosensitizer, CH₃CN and liquid phase substances after photoreaction.

Fig. S8. The curves of catalytic activity by adding photosensitizer after 3 h of illumination.

Fig. S9. ESR spectra of c-CoSe₂ and c-CoSe₂(400). The c-CoSe₂(400) shows an obvious ESR signal with *g* value of 2.0015, indicating the existence of Se vacancies.

Fig. S10. XPS survey spectra of c-CoSe₂ and o-CoSe₂/P.

Fig. S11. XRD pattern of o-CoSe₂/N after four recycles.

Fig. S12. TEM image of o-CoSe₂/N after four recycles.

Fig. S13. Charge difference of CO_2 adsorbed on o-CoSe₂/N and o-CoSe₂/P.

Entry	Catalyst/ o- CoSe ₂ /N	Photosensitizer/ [Ru(bpy) ₃]Cl ₂				Yield of	Yield of
			CO ₂	TEOA	Light	СО	H_{2}
						(µmol)	(µmol)
1	×	\checkmark		\checkmark	\checkmark	0	1.6
2	\checkmark	×	\checkmark	\checkmark	\checkmark	0	0
3 ^a	\checkmark	\checkmark	×	\checkmark	\checkmark	0	14.4
4	\checkmark			×	\checkmark	0	0
5		\checkmark		\checkmark	×	0	0.1
6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	49.8	13.5

Table S1. Control experiments of photocatalytic CO₂ reduction.

Conditions: $o-CoSe_2/N$ (1 mg), $[Ru(bpy)_3]Cl_2$ (5 mg), acetonitrile/H₂O/TEOA = 4 mL : 1 mL : 1.5 mL in the quartz tube of 55 mL, CO₂ (1 atm), irradiation with white LEDs lamp at room temperature. ^aDegassed with argon.

E . (.		average 1	D			
Entry	Catalyst	1h	2h	3h	Keierence	
1	o-CoSe ₂ /N	32,000		16,600	This work	
2	o-CoSe ₂ /P			10,476	This work	
3	o-CoSe ₂ (pure phase)			8,806	This work	
4	c-CoSe ₂	13,668		8,402	This work	
5	Co-Co ₂ P@NPC	63,000		35,000	Our previous work [1]	
6	Co _{1.11} Te ₂ ⊂C	23,000		11,400	Our previous work [2]	
7	Zn/Co-C-BMZIF (3:1)			11,000	Ref. [4]	
8	CoSn(OH) ₆	18,700			[3]	
9	Co ₃ O ₄ -NS	9,04	0 μmol h ⁻¹ g ⁻¹ i	[4]		
10	Co ₃ O ₄	3,523		2,003	Ref. [12]	
11	РММСоСС- 1200	187 μmol h ⁻¹ g ⁻¹ in 6 h			[5]	
12	ZnCo ₂ O ₄			45	Ref. [9]	
13	CuCo ₂ O ₄	22.9			[6]	
14	Co-POM	$17 \ \mu mol \ h^{-1} \ g^{-1} \ in \ 7 \ h$			[7]	
15	Co ₆ -MOF			13.1	[8]	

Table S2. The comparisons of photocatalytic CO_2 reduction performance of o-CoSe₂ and other Co-based catalyst.

[1] Y. Xu, J. Mo, Z. Fu, S. Liu, Z. Yang and W. Fu, Chem. Eur. J., 2018, 24, 8596-8602.

- [2] Y. Xu, J. Mo, G. Xie, D. Ding, S. Ding, X. Wang and C. Li, Chem. Commun., 2019, 55, 6862–6865.
- [3] X. Lin, Y. Gao, M. Jiang, Y. Zhang, Y. Hou, W. Dai, S. Wang and Z. Ding, *Appl. Catal. B: Environ.*, 2018, 224, 1009–1016.
- [4] W. Chen, B. Han, C. Tian, X. Liu, S. Liang, H. Deng and Z. Lin, *Appl. Catal. B: Environ.*, 2019, 244, 996–1003.
- [5] K. Zhao, S. Zhao, C. Gao, J. Qi, H. Yin, D. Wei, M. F. Mideksa, X. Wang, Y. Gao, Z. Tang and R. Yu, *Small*, 2018, 14, 1800762.
- [6] M. Jiang, Y. Gao, Z. Wang and Z. Ding, Appl. Catal. B: Environ., 2016, 198, 180-188.
- [7] G. Zhao, H. Pang, G. Liu, P. Li, H. Liu, H. Zhang, L. Shi and J. Ye, *Appl. Catal. B: Environ.*, 2017, 200, 141–149.

[8] J. Zhao, Q. Wang, C. Sun, T. Zheng, L. Yan, M. Li, K. Shao, X. Wang and Z. Su, J. Mater. Chem. A, 2017, 5, 12498–12505.