Supporting information

Outstanding thermoelectric properties in solvothermalsynthesized $Sn_{1-3x}In_xAg_{2x}Te$ micro-crystals through defect engineering and band tuning

Raza Moshwan^{a,e}, Wei-Di Liu^a, Xiao-Lei Shi^b, Sun Qiang^a, Han Gao^a, Yun-Peng Wang^d, Jin Zou^{a,c,**}, and Zhi-Gang Chen^{b,a*}

^aMaterials Engineering, The University of Queensland, St Lucia, QLD 4072, Australia

^bCentre for Future Materials, The University of Southern Queensland, Springfield Central, QLD 4300, Australia

^cCentre for Microscopy and Microanalysis, The University of Queensland, St Lucia, QLD 4072, Australia

^dSchool of Physics and Electronics, Hunan Key Laboratory for Super-micro structure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, P. R. China

^eUniversity of Creative Technology Chittagong, Chandgaon Police Station, 1084, Shah Amanat Bridge Connecting Road, Chittagong 4212, Bangladesh

E-mail:

*zhigang.chen@usq.edu.au, zhigang.chen@uq.edu.au

<u>**j.zou@uq.edu.au</u>

Figure S1. Thermal diffusivity *D* as a function of temperature for different $Sn_{1-}_{3x}In_xAg_{2x}Te$.

Figure S2. Specific heat (C_p) of $Sn_{1-3x}In_xAg_{2x}Te$ samples

Figure S3. EDS spectrum and compositional analyses of spot A and B from Figure 1e.

Figure S4. (a) A typical SEM image of the sintered $Sn_{0.85}In_{0.05}Ag_{0.10}Te$ pellet and (b-e) Corresponding EDS elemental map data of Sn, Te, In and Ag.

Figure S5. Extended (200) peak of **Figure 2**a shows peaks are shifting towards higher angle demonstrating the lattice shrinkage of the lattice.

Figure S6. Calculated Lorenz number *L* as function of temperature of $Sn_{1-3x}In_xAg_{2x}Te$.