

Supporting Information

Dopant-Free F-substituted Benzodithiophene Copolymer Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells

Xiangyu Kong^a, Yue Jiang *^{a,f}, Xiayan Wu^a, Cong Chen^a, Jiali Guo^a, Shengjian Liu*^b, Xingsen Gao^a, Guofu Zhou^c, Jun-Ming Liu^{a,d}, Krzysztof Kempa^{a,e}, and Jinwei Gao *^a

AUTHOR ADDRESS

^aInstitute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.

^bGuangzhou Key Laboratory of Materials for Energy Conversion and Storage, School of Chemistry, South China Normal University, Guangzhou 510006, China.

^cGuangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.

^dLaboratory of Solid-State Microstructures, Nanjing University, Nanjing 210093, China.

^eDepartment of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA.

^fKey Lab of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China.

AUTHOR INFORMATION

Corresponding Author

*Jinwei Gao: gaojinwei@m.scnu.edu.cn;

*Yue Jiang: jiangyue@m.scnu.edu.cn;

*Shengjian Liu: shengjian.liu@m.scnu.edu.cn

Supporting Information

Experimental Sections

Material: 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene(Spiro-OMeTAD), polytriarylamine (PTAA), methylammonium iodide(MAI), lead iodide (PbI₂ 99%) (Yingkou You Xuan Trade Co. Ltd), bis(trifluoromethanesulfonyl)imide (Li-TFSI), tert-butylypyridine (t-BP), (Sigma–Aldrich), SnCl₂· 2H₂O (Alfa Aesar) were used as received. Solvent: dimethyl formamide (DMF, 99.8%), dimethyl sulfoxide (DMSO, 99.9%), chlorobenzene (CB, 99.8%), acetonitrile, ethanol and isopropanol were purchased from Sigma–Aldrich without further purification. FTO glasses (FTO, 7 Ω/sq) were purchased from Yingkou You Xuan Trade Co. Ltd.

Preparation of Colloidal SnO₂ NCs Solution: SnO₂ NCs Solution was prepared by our previous method¹⁻², Typically, SnCl₂·2H₂O solution (0.1 M) was prepared by dissolving SnCl₂·2H₂O separately in ethanol, isopropanol, butanol, butanol containing certain content of water in a flask. Then the solution was separately stirred at room temperature for 10 min. To synthesize colloidal SnO₂ NCs, the SnCl₂·2H₂O solution was refluxed at 110°C for 2~4 hours with open refluxing apparatus.

Perovskite Solar Cells Fabrication:

Substrate preparation: FTO-coated glasses were sequentially ultrasonically cleaned with detergent, deionized water, acetone, and isopropanol for 30 min. All substrates were further cleaned by UV-Ozone for 10 min before depositing SnO₂ ESLs. The SnO₂ ETLs were prepared by spin-coating SnO₂ NCs solution on FTO substrates at 3000 rpm for 30 s, followed by thermal annealing at 150°C for 30min. After cooling down, the substrates were immediately transferred in a nitrogen atmosphere glove box for the deposition of the perovskite films.

Perovskite precursor solution and film preparation: Perovskite precursor was prepared as reported. Typically, 922 mg of PbI₂ and 320 mg of MAI were dissolved in 1.6 ml mixed solvent of DMF and DMSO (7:3 V/V), stirring at 60°C for 48h before use. The MAPbI₃ precursor solution was spin-coated on FTO/SnO₂ substrates at 500 rpm for 3 s and 4000 rpm for 30 s, with quickly dripping of 400 μL

chlorobenzene onto the rotating perovskite film at the beginning of 8-10 s of the second spin-coating step. Then the films were annealed at 100 °C for 10 min.

Hole transporting layer and the top electrode: After the perovskite annealing, the substrates were cooled down for few minutes and the HTM solution was spun at 3000 rpm for 30 s. The solutions were prepared as follows: 72.3 mg spiro-OMeTAD, 18 μ L Li-TFSI solution (520 mg in 1 ml acetonitrile), 30 μ L t-BP was dissolved in 1 ml chlorobenzene at a concentration of 10 mg ml^{-1} . A polytriarylamine (PTAA) solution was prepared by dissolving PTAA (36mg), a Li-TFSI (18 μ L), and t-BP (36ul) in 1ml of CB solution, while the novel polymers were dissolved in chlorobenzene. The schematic illustration of the spin-coating process for fabricating HTLs film is shown in Figure S2a. Specifically, the as synthesis polymers were dissolved in chlorobenzene at a concentration of 8 mg ml^{-1} . The solubility of polymers is not very good, there are some undissolved particles are attached to the inner wall of the bottles (Figure 1b). The preheated solution (about 110 °C) is drop casted onto the substrate using a pipette and the spin coating process is started immediately. The spin coater is programed to reach a speed of 5000 rpm in 1-2 seconds in order to avoid the temperature from quenching. During this process, the film dries within the 3-5 seconds and temperature quenches rapidly. It's important to note that the solvent volatilization will cause a change in the concentration of the solution, so this step needs to be completed quickly. Finally, 100 nm of Ag electrode was thermally evaporated on top of the device at a speed of 0.8 \AA .

Characterization.

Morphology: The morphology and microstructures were investigated by FE-SEM (ZEISS Ultra-55). The absorption spectra of ESLs deposited on quartz were measured by UV-vis spectrometer (SHIMADZU UV-2550) in a wavelength range at 250-800 nm.

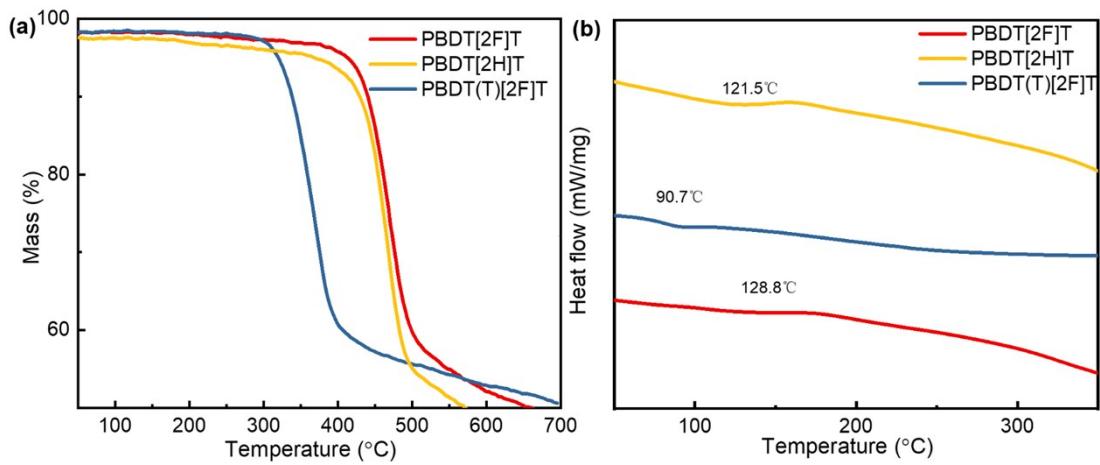
PL and TRPL: Steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectra were measured by fluorescence spectrometer (HITACHI F-5000) exited at 530 nm and FLS980 with excitation wavelength of 450 nm.

Thermogravimetric analyses: The thermogravimetric analyses were performed on a TA Q500 using a 10°C/min heating rate under a nitrogen flow. Differential scanning calorimetry (DSC) was performed on a DSC³⁺ Mettler Toledo at a scan rate of 20 °C/min in the nitrogen atmosphere.

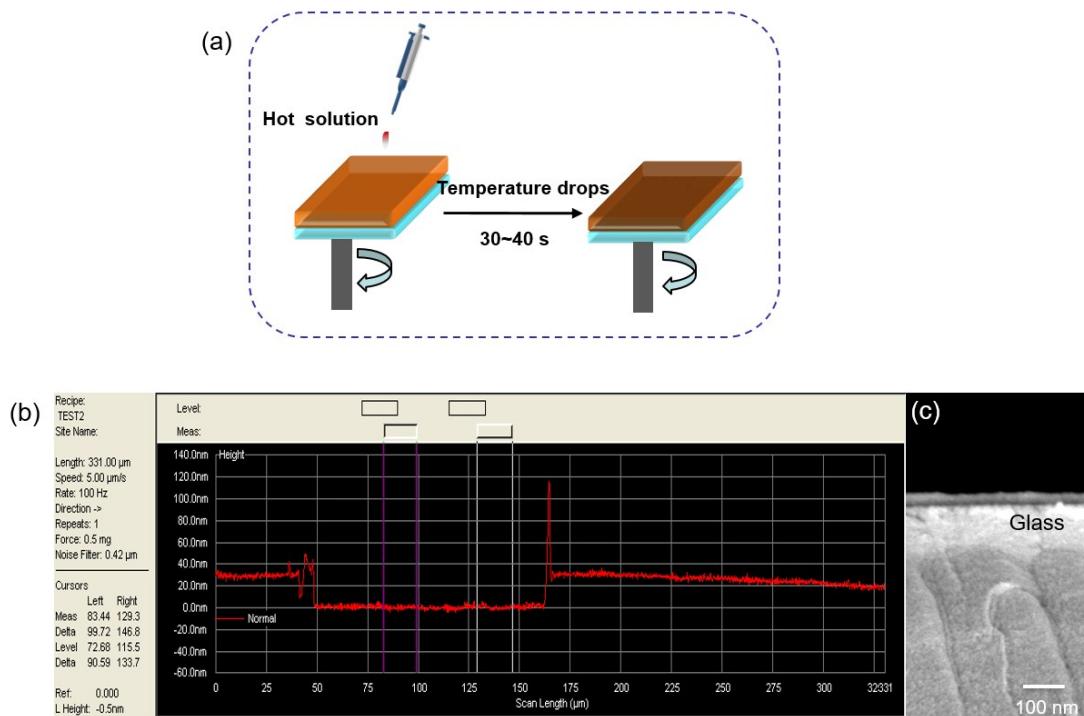
J-V characterizations: The current–voltage (J-V) curves of the non-encapsulated solar cells were measured by Keithley 2400 in a glovebox under AM1.5G illuminations (1000 W·m⁻²) from a solar simulator (Newport, 91160), which was calibrated using a standard silicon solar cell device by the NREL.

EQE measurement: The EQE measurements of photovoltaic devices were carried out using EQE system (Newport 66902), consist of a xenon light source, a monochromator, and a potentiostat.

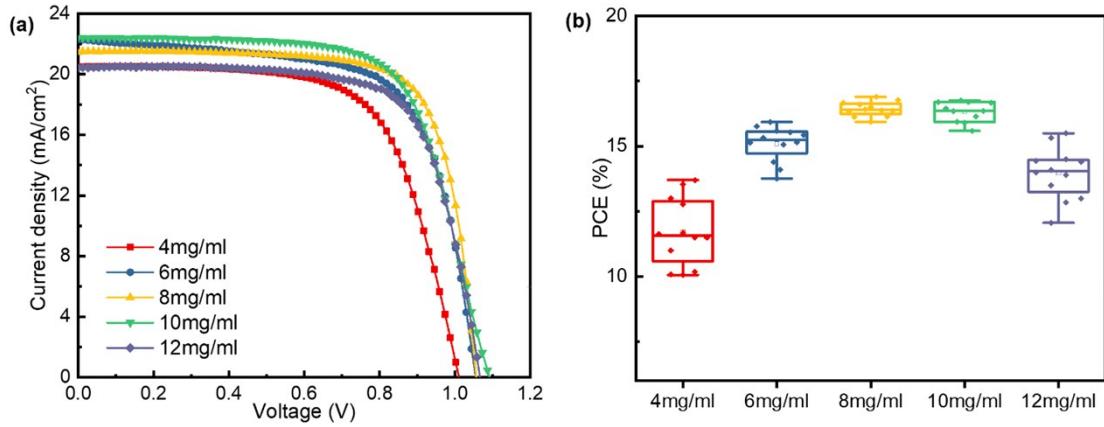
EIS characterization: The electrochemical impedance spectroscopy (EIS) measurements were performed on the Zahner Zennium electrochemical workstation with an illumination of 300 W m⁻² light source.

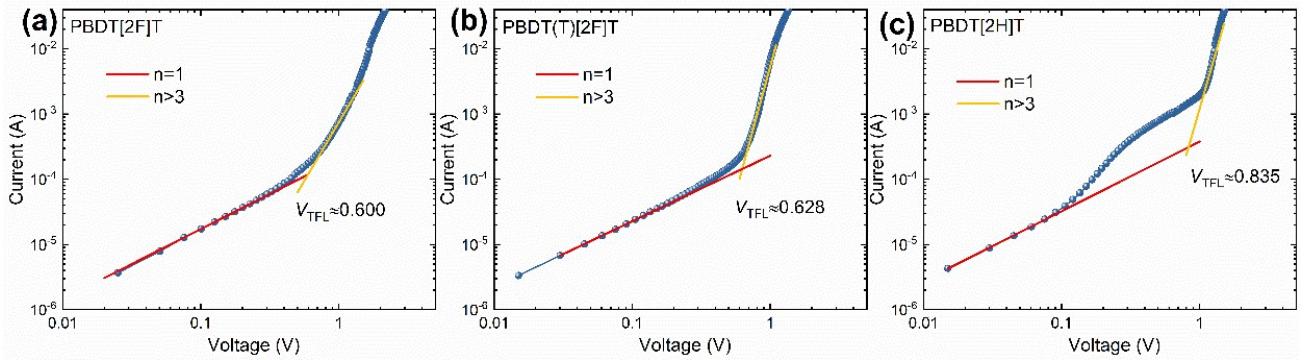

SCLC measurement: Space charge limited current (SCLC) characteristics of the devices was measured using a Keithley 2400 in the dark. The devices configuration follows: ITO/PEDOT:PSS/Perovskite/HTM/Au for hole-only devices. The perovskite films and Spiro-OMeTAD films were made by the same protocols used in solar cell fabrication. PEDOT:PSS films were prepared by spin-coated PEDOT:PSS aqueous solution on ITO at 3000 r.p.m. for 30 s, and then baked at 120 °C for 10 min. According to SCLC theory, the defect (trap) density (n_{traps}) can be

estimated as follows:
$$n_{trap} = \frac{2\epsilon\epsilon_0 V_{TFL}}{eL^2}$$
, where L , ϵ , ϵ_0 , and e are the thickness of the perovskite film, dielectric constant of the material, permittivity of vacuum, and electronic charge, respectively.


GIWAXS characterization: The samples used for GIWAXS (Xeuss 2.0) measurements were prepared by spin-coating the solutions onto Si wafers.

AFM measurement: The surface potentials and conductivity of films were obtained from the atomic force microscope (AFM) (Asylum Research, Cypher).³⁻⁴


Supporting Figures and Tables


Fig. S1 a) Thermogravimetric heating curves of polymers (heating rate 10 °C/min). b) Differential scanning calorimetry second heating curves for polymers (heating rate 20 °C/min)

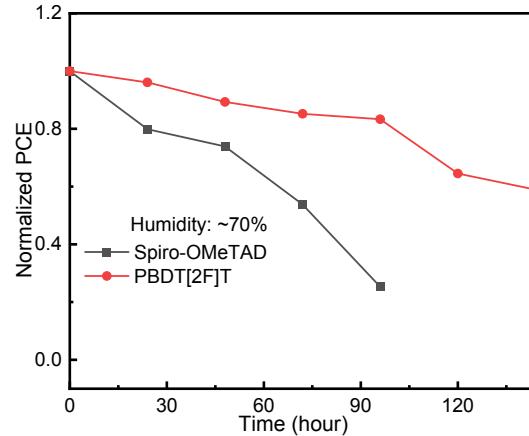

Fig. S2. a) Schematic illustration of the spin-coating process for fabricating HTM films. b) Step profiler test result. c) Cross-sectional scanning electron microscope (SEM) images of PBDT[2F]T on glass.

Fig. S3. (a) Current-voltage curves and (b) *PCE* statistics of 12 devices based on HTMs with different concentrations, (c) Current-voltage curves based on spiro-OMeTAD, PTAA, PBDT[2F]T.

Fig. S4 SCLC measurements with the device configuration of ITO/PEDOT:PSS/perovskite/HTM/Au.

Fig. S5 Normalized *PCE* versus time, stored at ambient condition with relative humidity around 70% without encapsulation.

Table S1. SEC analyses, optical bandgap and HOMO LUMO energy level of the PBDT[2H]T, PBDT[2F]T and PBDT(T)[2F]T polymers.⁵

Polymer	Mn [kDa]	Mw [kDa]	PDI	E _{opt} [eV]	E _{HOMO} (IP) [eV]	E _{LUMO} [eV]
PBDT[2H]T	28	48	1.7	2.1	5.03	2.93
PBDT[2F]T	13	28	2.1	2.1	5.29	3.19
PBDT(T)[2F]T	32	49	1.5	2.0	5.22	3.22

Table S2. Photovoltaic parameters for the PSCs devices based on PBDT[2F]T with different concentrations.

HTL	V _{oc} (V)	J _{sc} (mA/cm ²)	FF (%)	PCE (%)
4mg/ml	1.01	20.47	66.31	13.72
6mg/ml	1.05	22.25	67.96	15.94
8mg/ml	1.11	22.15	68.80	16.98
10mg/ml	1.09	22.38	68.58	16.74
12mg/ml	1.06	20.40	71.34	15.51

Table S3. The time constant and amplitude extracted from fitting the TRPL data with biexponential decay equation for different HTMs.

Polymer	τ ₁ (ns)	A1	τ ₂ (ns)	A2	K _{ct}
Spiro-OMeTAD	2.29	1749	82.84	0.22	-
PBDT[2H]T	2.97	237	111.37	0.34	2.93
PBDT[2F]T	2.38	1229	97.54	0.25	3.19
PBDT(T)[2F]T	3.18	124	128.85	0.28	3.22

REFERENCES

1. C. Chen, Y. Jiang, J. L. Guo, X. Y. Wu, W. H. Zhang, S. J. Wu, X. S. Gao, X. W. Hu, Q. M. Wang, G. F. Zhou, Y. W. Chen, J. M. Liu, K. Kempa and J. W. Gao, *Adv. Funct. Mater.*, 2019, **29**, 1900557.
2. R. S. Mai, X. Y. Wu, Y. Jiang, Y. Y. Meng, B. Q. Liu, X. W. Hu, J. Roncali, G. F. Zhou, J. M. Liu, K. Kempa and J. W. Gao, *J. Mater. Chem. A.*, 2019, **7**, 1539-1547.

3. J. Chen and N. G. Park, *Adv. Mater.*, 2019, **31**, e1803019.
4. W. Ke, C. C. Stoumpos and M. G. Kanatzidis, *Adv. Mater.*, 2019, **31**, e1803230.
5. Y. Wang, X. Liu, Z. Zhou, P. Ru, H. Chen, X. Yang and L. Han, *Adv. Mater.*, 2019, **31**, e1803231.
6. Y. Firdaus, L. P. Maffei, F. Cruciani, M. A. Muller, S. J. Liu, S. Lopatin, N. Wehbe, G. O. N. Ndjawa, A. Amassian, F. Laquai and P. M. Beaujuge, *Adv. Energy Mater.*, 2017, **7**, 1700834.