Supporting information for

Porous V₂O₅ Yolk-Shell Microspheres for Zinc Ion Battery Cathode: Activation Responsible for Enhanced Capacity and Rate Performance

Rui Li^{a,b}, Huamin Zhang^a, Qiong Zheng^a* and Xianfeng Li^a*

^aDivision of energy storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, P. R. China.

^bUniversity of Chinese Academy of Sciences, Beijing 100039, P. R. China.

* Email: Prof. Dr. Xianfeng Li: lixianfeng@dicp.ac.cn; Dr. Qiong Zheng: zhengqiong@dicp.ac.cn.

Figure S1. SEM images of V_2O_5 -YS at a) low magnification and b) high

magnification.

Figure S2. SEM image of broken microsphere.

Figure S3. N_2 adsorption/desorption isotherms of commercial V_2O_5 and as-prepared V_2O_5 -YS at 77K.

Figure S4. SEM Images of V_2O_5 -YS cathode cycling for 100 cycles at the current density of 1.0 A g⁻¹ at a) low magnification and b) high magnification, where nanofibers are fragments of glass fiber membrane.

Figure S5. Cycling performance of the V₂O₅-YS cathode at current density of 0.2 A

g⁻¹.

Figure S6. Cycling performance of the pristine V_2O_5 at current density of 5 A g⁻¹.

Figure S7. The equivalent circuit used for fitting the EIS curves of Figure 4c, where $R_s = bulk$ resistance, $R_{ct} = charge$ transfer resistance, CPE = constant phase element, W=Warburg impedance.

Figure S8. Galvanostatic discharge curve of the V_2O_5 -YS cathode in a three-electrode cell in 5 mM H_2SO_4 electrolyte.

Figure S9. a) SEM image of V₂O₅-YS electrode soaked in aqueous electrolyte (nanoflakes: $Zn_3V_2O_7(OH)_2 \cdot 2H_2O$) b) Element quantification of nanoflakes and the ratio of Zn, V, O is accorded with $Zn_3V_2O_7(OH)_2 \cdot 2H_2O$.

Figure S10. The magnified profile of a) (004) plane in the first cycle. b) (007) plane in the 11st cycle

Materials	Capacity	Cycling	Reference
		performance	
V_2O_5 -YS	410mA h g ⁻¹ at	80% after 1000	This work
	0.1A g ⁻¹	cycles at 5A g ⁻¹	
	182mA h g^{-1} at		
	20A g ⁻¹		
V_2O_5	224mA h g ⁻¹ at	37% after 400	Chem. Commun., 2018,
	0.1A g ⁻¹	cycles at 1A g ⁻¹	54, 4457
V_2O_5	132mA h g^{-1} at	82% after 6000	Electrochimica Acta 306
	10A g ⁻¹	cycles at 10A g-	(2019) 307e316
		1	
V_2O_5	$336 \text{mA} \text{ h g}^{-1} \text{ at}$	85% after 5000	Nano Energy 60 (2019)
	50mA g ⁻¹	cycles at 10A g ⁻¹	171–178
V ₂ O ₅ -CNT	219mA h g ⁻¹ at	80% after 500	Nano Energy 60 (2019)
	10A g ⁻¹	cycles at 10A g ⁻	752–759
	C	1	
$Mg_{0.34}V_2O_5 \cdot nH_2O$	81mA h g ⁻¹ at	97% after 2000	ACS Energy Lett. 2018,
	5A g ⁻¹	cycles at 5 A g ⁻¹	3, 2602–2609
$Zn_{0.25}V_2O_5 \cdot nH_2O$	223mA h g ⁻¹ at	82% after 1000	Nature Energy 2016, 1,
	4.5A g ⁻¹	cycles at 4.5A g ⁻	16119
	-	1	
Expanded	222mA h g ⁻¹ at	72% after 3000	Nano Energy 62 (2019)
$V_2O_5 \cdot 2.2H_2O$	10A g ⁻¹	cycles at 5A g ⁻¹	94-102
V ₂ O ₅ ·nH ₂ O-Graphene	248 mA h g ⁻¹	71% after 900	Adv. Mater. 2018, 30,
	at 30A g ⁻¹	cycles at 6A g ⁻¹	1703725
Li _x V ₂ O ₅ ·nH ₂ O	170 mA h g ⁻¹	67% after 50	Energy Environ. Sci.,
	at 10A g ⁻¹	cycles at 1A g ⁻¹	2018,11, 3157-3162
Ag _{0.4} V ₂ O ₅ ·nH ₂ O	180 mA h g ⁻¹	74% after	Energy Storage
•	at 2A g ⁻¹	1000cycles at	Materials 18 (2019) 10-
	C	5Å g ⁻¹	14
$K_{2}V_{8}O_{21}$	247mA h g ⁻¹ at	90% after 300	Nano Energy 51 (2018)
	0.3A g ⁻¹	cycles at 6A g ⁻¹	579–587
$NH_4V_4O_{10}$	150 mA h g ⁻¹	76% after 100	J. Mater. Chem. A,2019,
	at 10A g^{-1}	cycles at 1A g ⁻¹	7, 940–945
$Ca_{0.67}V_8O_{20}$ ·3.5H ₂ O	291mA h g ⁻¹ at	74% after 2000	ACS Nano 2019, 13, 12,
	5A g ⁻¹	cycles at 5A g ⁻¹	14447-14458
Ca _{0.25} V ₂ O ₅ ·nH ₂ O	72mA h g^{-1} at	96% after 3000	Angew. Chem.
	5.76A g ⁻¹	cycles at 5.76A	10.1002/ange.201713291
	-	g ⁻¹	

Table S1. Comparison of battery performance of V_2O_5 -YS with other V_2O_5 -based cathode materials

Cell	$R_{\rm s}\left(\Omega ight)$	CPE (µF)	$R_{\mathrm{ct}}\left(\Omega ight)$	
Pristine	0.6	18.3	380.0	
After activation	4.6	696.2	39.8	

Table S2. Simulated parameters from EIS curves in Figure 4c using equivalent circuitin Figure S7.

_

Supplementary Note1: Discussion of the Galvanostatic Intermittent Titration Technique (GITT)

GITT tests were employed to determine the kinetic behavior of materials by calculating the Zn2+ diffusion coefficient based on the following equation:

$$D = \frac{4L^2}{\pi\tau} (\frac{\Delta E_s}{\Delta E_t})^2$$

Where L is diffusion length (cm) of Zn^{2+} , which is approximate to thickness of electrode here, τ is the relaxation time (s), and ΔE_s is the steady-state voltage change (V) by the current pulse. ΔE_t is the voltage change (V) during the constant current pulse after eliminating the iR drop. All of the parameters are illustrated as follows.

