Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

A Quasi-Solid-State Photothermal Supercapacitor via Enhanced Solar Energy Harvest

Mingyu Zhao^{1,3}, Yaling Li¹, Feng Lin¹, Yunshi Xu¹, Leilei Chen^{1,2}, Weicun Jiang¹, Ting Jiang^{1,2}, Shuguang Yang¹ and Yi Wang^{1,2,*}

¹Chemical Fibers and Polymer Materials, College of Materials Science and Engineering,

Donghua University, Shanghai 201620, China

²College of Chemistry, Chemical Engineering and Biotechnology, Donghua University,

Shanghai 201620, China

³Current address: Department of Mechanical Engineering, The University of Texas at Austin,

Austin, TX 78712, USA

*E-mail: ywang@dhu.edu.cn

KEYWORDS: photothermal supercapacitors, solar energy, mesoporous carbon nanospheres, graphene hydrogel, flexibility

Figure S1. Digital photographs of MCN and N-MCN aqueous solution after standing for different time periods. It showed that N-MCN had enhanced water-dispersity and hydrophilicity/wettability.

Figure S2. (a) XPS survey spectra, (b, c) C 1s and N 1s spectra of N-MCN. It showed that the N with the dominated Pyridinic-N and Quaternary-N was doped into MCN with plentiful sp2-hybrided carbon framework.

Figure S3. Digital photographs for the facile formation of N-MCN@GH hydrogels and aerogels under a wide N-MCN/GO ratios: (a) N-MCN/GO solution. (b) After hydrothermal treatment. (c) N-MCN@GH hydrogels with various water contents. (c) Light-weight N-MCN@GH aerogels obtained via freeze drying.

Figure S4. SEM images of N-MCN@GH. It showed that the dispersed N-MCN was homogeneously intercalated between graphene nanosheets to build a 3D porous architecture.

Figure S5. Cross section-view SEM images of (a) GH and (b) N-MCN@GH films. The enlarged interlayer spacing of N-MCN@GH revealed the intercalation of N-MCN between graphene nanosheets.

Figure S6. Photographs of a flexible supercapacitor based on N-MCN@GH film electrode and its compact configuration, with a thickness of 0.25 mm.

Figure S7. (a) Reflection spectra and (b) Transmission spectra of the GH and N-MCN@GH films. N-MCN@GH had lower reflection and transmission than GH, suggesting the N-MCN intercalation-produced 3D hierarchical porous network for multiple scattering with high absorption.

Figure S8. (a) The cycled GCD curves at a current density of 1 A g^{-1} , where blue lines represented the cooling to the 5 °C and red lines represented the cooling and irradiation for 10 min. (b) Capacitance retention of N-MCN@GH supercapacitor after different cooling and irradiation cycles as illustrated in "a".

Figure S9. Galvanostatic charge/discharge curves of N-MCN@GH at a current density of 5 A g^{-1} under different environmental conditions.

Figure S10. (a) GCD curves at a current density of 1 A g^{-1} and (b) corresponding capacitance curve of N-MCN@GH supercapacitor at different environment temperatures.

Figure S11. (a) Transmission spectra of the PET films. (b) UV-vis-NIR absorption spectra of N-MCN@GH electrodes with/without PET film packaged.

Figure S12. Solar-thermal heating curves N-MCN@GH electrodes with/without PET film packaged under the simulated sunlight illumination (0.36 W/cm⁻²).

Table S1.

Structural properties of the GH and N-MCN@GH.										
Sample	BET surface area (m² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Micropore volume (cm ³ g ⁻¹)	t-Plot Micropore Area (m ² g ⁻¹)	Mesopore volume (cm ³ g ⁻¹)					
GH	125	0.53	0.03	62.67	0.52					
N-MCN@GH	742	1.19	0.10	187.11	1.11					

Table S2.

Comparisons of the electrochemical performance of N-MCN@GH with the reported flexible supercapacitors.

Active material	Electrolyte	Potential window	Volumetric Capacitance	Capacitance retention/ cycle number	Energy density (mWh cm ⁻ ³)	Power density (mW cm ⁻³)	Ref.
Laser							Science 2012 , 335,
Scribing graphene	PVA/H ₃ PO ₄	1 V	3.67 mF cm^{-2}	96.5%/10000	1.36	200	1326-1330
Fe ₂ O ₃ /PPy	PVA/LiCl	1.6 V	382.4 mF cm^{-2}	97%/5000	0.22	165.6	Angew. Chem., Int. Ed.
	PVA/Na ₂ S		at 0.5 mAcm ² 1.4 F cm ⁻³				ACS Nano 2016 , 10,
Ni/MnO ₂ O ₄	O_4	2.5 V	at 2.5 mA cm ⁻³	85%/1000	0.78	2.5	1273.
MnO2@NN A//Ppy@NN Na2SO4 A		1.6 V	135.15 mF cm ⁻²		1.23	310	Adv. Mater. 2016, 28,
	Na ₂ SO ₄		at 3 A g ⁻¹	106%/20000			4105.
rGO/Fe ₂ O ₃	PVA/KOH	1 V	0.25 F cm ⁻³	96%/5000	0.035	0.003	Chemistry of Materials
							2017 , 29,14: 6058-65.
Ni-Mn-C	PVA/KOH	0.6 V	0.53 F cm ⁻³	86%/10000	0.027	36.20	J. Mater. Chem. A 2018, 6 47: 24086-91
MnO ₂	PVA/LiCl	0.8 V	2 F cm ⁻³	010//20000	0.17	1	Nanoscale 2017 ,9,3593-
			at 0.5A g ⁻¹	91%/20000			3600
Graphene	PVA/H ₂ SO ₄	1 V	4.21mF cm ⁻² at	95%/10000	0.552	561.9	ACS Appl. Mater.
			0.41mA cm ⁻²				Interfaces 2017 , 9,
			8 1F cm ⁻³				9/63-9//1
N-	PVA/H ₂ SO ₄	1 V	197.5 mF cm ⁻²	80%/10000	1.12	522.08	This work
MCN@GH		·	at 0.64 mA cm ⁻²				