Supplementary Information

Molecular Aggregation Method Perovskite–Fullerene Bulk Hetero Structure Solar Cells

Su Ryong Ha,^a Woo Hyeon Jeong,^a Yanliang Liu,^b Jae Teak Oh,^a Sung Yong Bae,^a Seungjin Lee,^c Jae Won Kim,^d Sujoy Bandyopadhyay,^e Hong In Jeong,^a Jin Young Kim,^d Younghoon Kim,^f Myoung Hoon Song,^g Sung Heum Park,^b Samuel D. Stranks,^h Bo Ram Lee,^{b*} Richard H. Friend^{h*} and Hyosung Choi^{a*}

- ^a Department of Chemistry, Research Institute for Convergence of Basic Sciences, and Research Institute for Natural Science, Hanyang University, Seoul 04763, Republic of Korea
- E-mail: hschoi202@hanyang.ac.kr
- ^b Department of Physics, Pukyong National University, Busan 608-737, Republic of Korea E-mail: brlee@pknu.ac.kr
- ^c Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
- ^d Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- ^e Department of Chemistry, SRICT Institute of Science & Research (SRICT-ISR)_Block No.
 402, Ankleshwar-Valia Road, Ta: Valia, Dist: Bharuch, Pin-393135, India
- ^f Division of Energy Technology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-Daero, Hyeonpung, Daegu 42988, Korea.
- ^g Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- ^h Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, U.K

E-mail: rhf10@cam.ac.uk

Fig. S1 Dynamic light scattering size distribution of the solvation of PCBM solutes in different solvents. (a) CB, (b) CF, and (c) Tol

Fig. S2 AFM topographic images of perovskite films. a, perovskite film treated with pure CB anti-solvent. b, PCBM film coated on sample a (PHJ-CB). c-e, Perovskite films with Pe-PCBM BHS using CB solvent (BHS-CB) (c), CF (d), and Tol (e). Perovskite films with PHJ and Pe-PCBM BHS have sample configuration of ITO/PEDOT:PSS/perovskite/PCBM. Scale bar is 2 μ m.

Fig. S3 SEM and EDS mapping images of PHJ film. a-c, Top-veiw SEM image (a) and EDS mapping profiles of SEM image (a) showing Pb (green, b) of perovskite and O (cyan, c) elements of PCBM, repsectively. Scare bar is $2.5 \mu m$.

Fig. S4 Images for comparing reduction rate for amount of PCBM in Pe-PCBM BHS films.

Fig. S5 Optimization of the devices with Pe-PCBM BHS as a function of PCBM thickness. ad, V_{OC} (a), J_{SC} (b), FF (c), and PCE (d).

Fig. S6 UV-vis absorption of perovskite films with PHJ and Pe-PCBM BHS. Absorption spectra of perovskite/PCBM (PHJ) and perovskite:PCBM (BHS) films.

Fig. S7 Hysteresis of devices with PHJ and Pe-PCBM BHS using different solvents. Scan rate for forward and reverse directions is 30 mV s⁻¹.

Fig. S8 Comparison of device stability between PHJ and Pe-PCBM BHS.

Fig. S9 *J-V* curves of the devices as a function of structure, solvent and perovskite thickness. a-c, *J-V* curves of the devices with PHJ and Pe-PCBM BHS using CB (a), CF (b), and Tol (c).

Reference	Perovskite -PCBM structure	Perovskite materials	Device structure	PCE (%)	J _{sc} (mA cm ⁻²)	V _{oc} (V)	FF
Wu's group (Nat. Photon., 2016)	ВНЈ	CH₃NH₃Pbl₃	ITO / PEDOT:PSS / PHJ ^a / <mark>Ca</mark> / Al	11.4	16.2	0.95	0.73
			ITO / PEDOT:PSS / BHJ / <mark>Ca</mark> / Al	12.1	16.0	0.96	0.79
			ITO / PEDOT:PSS / BHJ / PC ₇₁ BM / Ca / Al	16.0	20.2	0.97	0.82
Han's group (Nat. Energy, 2016)	GHJ	FA _{0.85} MA _{0.15} Pb(I _{0.85} Br _{0.15}) ₃	FTO / NiO _x / PHJ / Nb-TiO _x / Al	11.31	17.90	0.93	0.68
			FTO / NiO _x / GHJ / Al	Not reported			
			FTO / NiO _x / GHJ / <mark>PCBM / Nb-TiO_x /</mark> AI	18.21	21.95	1.08	0.80
		CH ₃ NH ₃ PbI ₃	FTO / NiO _x / PHJ / Nb-TiO _x / Al	16.1	20.01	1.03	0.78
			FTO / NiO _x / GHJ / Al		Not reported		
			FTO / NiO _x / GHJ / <mark>PCBM / Nb-TiO_x /</mark> AI	16.9	20.09	1.04	0.78
Our work	внѕ	CH ₃ NH ₃ PbI ₃	ITO / PEDOT:PSS / PHJ / AI	11.65	17.09	0.92	0.74
			ITO / PEDOT:PSS / BHS / AI	16.49	24.05	0.92	0.75
			ITO / PEDOT:PSS / BHS / PCBM / AI	18.08	24.15	0.97	0.77

 Table S1 Comparison of our works with previous reports published in journal with high quality.

^a This PHJ structure consists of $CH_3NH_3PbI_3$ and $PC_{71}BM$.

Device type	Scan	V _{oc} (V)	<i>J_{sc}</i> (mA cm ^{−2})	FF	PCE (%)
PHJ (CB)	Forward	0.91	17.98	0.72	11.78
	Reverse	0.91	17.40	0.71	11.32
	Forward	0.92	24.05	0.75	16.49
	Reverse	0.92	24.09	0.74	16.36
	Forward	0.93	22.77	0.75	15.85
	Reverse	0.92	22.32	0.74	15.22
	Forward	0.88	22.54	0.69	13.81
513 (10)	Reverse	0.87	21.75	0.69	13.14

Table S2 The photovoltaic parameters for hysteresis of the devices with PHJ and Pe-PCBMBHS using different solvents.

Device type	Perovskite concentration (wt %)	V (V)	J₅c (mA cm⁻²)	FF	PCE (%)
РНЈ (СВ)	37	0.92 (± 0.01)	17.09 (± 0.48)	0.74 (± 0.01)	11.65 (± 0.43)
	45	0.92 (± 0.01)	11.68 (± 0.34)	0.71 (± 0.02)	7.60 (± 0.31)
	55	0.82 (± 0.02)	10.54 (± 0.39)	0.63 (± 0.02)	5.42 (± 0.39)
PHJ (CF)	37	0.93 (± 0.01)	17.78 (± 0.41)	0.71 (± 0.02)	11.78 (± 0.32)
	45	0.93 (± 0.01)	10.87 (± 0.38)	0.72 (± 0.02)	7.39 (± 0.21)
	55	0.85 (± 0.03)	8.55 (± 0.34)	0.65 (± 0.03)	4.82 (± 0.46)
PHJ (Tol)	37	0.92 (± 0.01)	16.26 (± 0.37)	0.76 (± 0.02)	11.29 (± 0.33)
	45	0.92 (± 0.02)	9.95 (± 0.41)	0.72 (± 0.01)	6.65 (± 0.25)
	55	0.78 (± 0.02)	11.48 (± 0.43)	0.60 (± 0.04)	5.34 (± 0.39)
BHS (CB)	37	0.92 (± 0.01)	21.87 (± 0.35)	0.71 (± 0.01)	14.46 (± 0.36)
	45	0.92 (± 0.01)	24.05 (± 0.42)	0.75 (± 0.02)	16.49 (± 0.31)
	55	0.91 (± 0.01)	23.35 (± 0.48)	0.64 (± 0.01)	14.02 (± 0.43)
BHS (CF)	37	0.92 (± 0.01)	21.89 (± 0.41)	0.70 (± 0.02)	14.10 (± 0.32)
	45	0.93 (± 0.01)	22.77 (± 0.36)	0.75 (± 0.02)	15.85 (± 0.25)
	55	0.90 (± 0.02)	22.97 (± 0.39)	0.64 (± 0.01)	13.33 (± 0.39)
BHS (Tol)	37	0.91 (± 0.01)	19.56 (± 0.32)	0.70 (± 0.02)	12.45 (± 0.33)
	45	0.88 (± 0.03)	22.54 (± 0.38)	0.69 (± 0.03)	13.81 (± 0.42)
	55	0.82 (± 0.01)	21.55 (± 0.42)	0.63 (± 0.02)	11.60 (± 0.31)

 Table S3 Photovoltaic parameters of the devices as a function of structure, solvent and perovskite thickness.