Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Materials

Robust self-stabilized electrode for high-efficient hydrogen evolution

reaction based on Al-based metallic glasses

Song Ju^{a,b,g}, Jingqing Feng^{a,b,c,g}, Peng Zou^{a,b}, Wei Xu^{a,b}, Shunjie Wang^d, Weibo Gao^d, Huajun Qiu^e, Juntao Huo^{a,b,†}, Jun-Qiang Wang^{a,b,f,†}

- ^{c.} School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- d. Ningbo Institute of Measurement and Testing, Ningbo 315048, China
- e. School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
- ^{f.} School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
- g. these authors contribute equally
- † Correspondence should be addressed to juntaohuo@nimte.ac.cn, jqwang@nimte.ac.cn

^{a.} Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

^{b.} Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Catalyst	Onset overpotentia Ιη(V)	η (mV) at 10 mA/cm ²	Tafel slope (mV/decade)	TOFs (s⁻¹)	Refs
$AI_{80}Ni_6Co_3M_3Y_5Au_3$	0.012	62	44	3.7 (η 200mv)	This work
MoS ₂ @RGO	_	100	41	-	[1]
Mo ₂ C@NPC/ NPRGO	-	34	33.6	_	[2]
WS ₂ /RGO	_	200	58	_	[3]
FeP/GS	0.03	123	50	_	[4]
MoS ₂ /MCNs	_	_	42	_	[5]
Mo ₂ C–CNT	_	152	55.2	_	[6]
Mo ₂ C/CNT– graphene	0.062	135	58	-	[7]
WO ₂ –CMNs	0.035	58	46	_	[8]
Fe _{0.9} Co _{0.1} S ₂ /CNT	0.09	120	46	_	[9]
CoP/CNT	0.04	122	54	_	[10]
CoP/MoS ₂ -CNTs	0	12	42	_	[11]
MoO ₂ @PC-RGO	0	64	41	_	[12]
NiMoNx/C	0.078	_	35.9	_	[13]
Fe-Co ₂ P/NCNTs	0.025	104	68	_	[14]
P–WN–rGO	0.046	85	54	_	[15]
FeCo@NCNTs-NH	0.07	_	72	_	[16]
CoNi@NC	0	142	104	_	[17]
SCEIN/SWNT	0	77	40	_	[18]
FeCo–C	0.088	262	74	_	[19]
Co@NC/NG	0.049	_	79.3	_	[20]
MoDCA-x	0.006	78	41	_	[21]
HMFeP@C	0.025	115	56	_	[22]
Fe ₃ C–GNRs	_	49	46	_	[23]
CoSe ₂ @DC	0.04	132	82	-	[24]
Cr–C	0.049	123	90	-	[25]
Ni–doped np–G	_	-	45	-	[26]
A–Ni–C	_	34	41	-	[27]
CoSe ₂ NP/CP	-	137	40	-	[28]
CMSNA-8	0.121	-	43	-	[29]
Se–MoS ₂ /CC	0.06	127	63	-	[30]
Mo ₂ C/CC	0.03	140	124	_	[31]
CoP NPs/CC	0.033	48	70	_	[32]
Mo-W-P/CC	_	_	52	_	[33]
Co(S _{0.73} Se _{0.27})/CFP	_	-	45.3	-	[20]

 Table S1. The overpotentials, Tafel slope and TOF of various HER electrodes in acidic electrolytes.

MoS ₂ /CoS ₂ /CC	_	87	73.4	-	[20]
CoS ₂ /RGO–CNT	-	142	51	_	[20]
WO ₃ –x–CNFs	0.134	185	89	_	[34]
WS ₂ @P,N,O-		125	E 2 7		[35]
graphene	_	125	52.7	_	[00]
NG–Mo	_	140	105	_	[36]
Co@NGF	0.014	124.6	93.9	_	[20]
MoS ₂ /graphene film	0.07	100	41	_	[37]
MoS _{2+x} /N–CNT/CP	0.135	160	36	_	[38]
MoS ₂ CC	0.1	_	39	_	[39]
$WS_{2(1-x)}Se_{2x-}CFs$	_	_	105	_	[40]
[Mo ₂ S.] ⁴⁺	0.15	250	51 89 52.7 105 93.9 41 36 39 105 120 58 39 39 39 46 44 - <	0.07	[41]
[100334]	0.15	230	120	(ղ 0mv)	
[Mo ₂ S ₁₂] ²⁻ /Δu	015	>300	51 89 52.7 105 93.9 41 36 39 105 120 58 39 39 39 46 44 - <	0.47	[42]
[WO2513] /Au	0.15	2000		(η 200mv)	
[M02S12]2-	01	161	39	3.27	[43]
[11102012]	0.1	101	51 89 52.7 105 93.9 41 36 39 105 120 58 39 39 39 46 44 - <	(η 200mv)	
[M02S12]2-	0 1 1	200	105 93.9 41 36 39 105 120 58 39 39 39 85 46 46 44	3	[44]
[11103013]	0.11	200		(η 200mv)	
Au NPs	0.11	>350	85	4.43*10-4	[45]
(10 nm)/C				(ղ 350mv)	
	P 0.03 100 46	0.015			
Ni ₂ P		100	46	(η 1 00mv)	[46]
				0.50	
				(η 200mv)	
			>350 85 100 46	0.0004	
				(η 0 mv)	
Nn-Co ₂ P	0.024	0.03 100 46 (η 100 0.03 100 46 (η 100 (η 200 0.004 80 44 0.004 (η 50r 0.09	0.0045	[47]	
	0.024		(ղ 50mv)		
				0.05	
				(η 1 00mv)	
MoP	_	_	58 39 39 85 46 44 -	0.019	[48]
				(η 1 00mv)	
FeaP	_	_	_	0.052	[48]
			39 85 46 44 - - -	(η 1 00mv)	
CoP	_	_	_	0.072	[48]
			39 85 46 44 - - - - -	(η 1 00mv)	[]
Fe Co P				0.095	[48]
	_	_		(η 1 00mv)	[40]
Ea Ca D			- 0.09 - (η 100 - 0.1 - (η 100 - 0.04	0.12	[48]
1°C0.5°C00.5°	-	-		(η 1 00mv)	
Fe Co D				0.045	[48]
1 00.75 000.251	-	_	-	(η 100mv)	r1

Nien				0.034	[48]
IN12p	_	—	_	(η 1 00mv)	[10]
FaD			- (r	0.035	[48]
rer	-	—		(η 1 00mv)	
C . D				0.027	[48]
$C0_2P$	-	-	- (η]	(η 1 00mv)	
		_		0.001	[49]
				(η 1 00mv)	
Mas /PCO				0.026	
WIOS ₂ /RGO	-		-	(η 1 50mv)	
				0.12	
				(η 2 00mv)	
	CoP – –	_		0.114	[49]
				(η 100mv)	
CoP				0.87	
COP			-	(η 150mv)	
				3.65	
			(η 200mv)		
MoS ₂ edge	-	-		1.25	[49]
			-	(η 100mv)	
				7.42	
				(η 200mv)	
	_	_		0.089	[49]
MoP/S			-	(η 100mv)	
				0.505	
				(η 150mv)	

Material	Strength (MPa)	Ref.	Electric Conductivity (S/m)	Ref.
Al-MG	220	-	2.6*E6	This work
Nafion112	12	_	10	[50]
20um 323k Nafion	16	_	7.5	[51]
20um 333k Nafion	20	_	9	[51]
Nafion 112 wet	19.1	-	7.5	[52]
Nafion 112 dry	26.6	-	9	[52]
32% porosity silica sol	10	-	1E-7	[53]
81% porosity silica sol	20	-	1.05E-4	[53]
PVDF/PAN1(90/10)	5	[54]	1E-4	[55]
PVDF/PAN1(90/10)	9	[54]	1E-4	[55]
PVDF	2.5	[54]	3E-7	[56]
PTFE/PA(15%)	40	[57]	5	[55]
5%CNT 95%PTFE	5	[57]	10	[58]
5%CNT 95%PTFE	20	[57]	10	[58]
CoS ₂ /RGO-CNT	32	[59]	3000	[59]
CoOx-CNT-CC	15	-	1250	[59]
CoOx-CC	5	_	400	[59]
M-CC	7	_	625	[59]
CC-700	11	_	588	[59]

Table S1. The yielding strength and electric conductivity for various materials used in HER electrodes.

СС	21	_	526	[59]
Nickel foam	3	-	100000	_
nanoporous Au	20	-	1000000	_
nanoporous Au	70	-	1.6E6	_

Figure S1. The optical image of ribbons for $Al_{97}Au_3$, $Al_{85}Ni_7Y_8$ and $Al_{80}Ni_6Co_3Mn_3Y_5Au_3$. The thickness of the electrode is 20 um, the width of the electrode is about 1.8 mm, the length of the electrode for electrochemical measurement is about 1cm.

Figure S2. The reaction stability of $Al_{97}Au_3$ electrode in 0.5 M H_2SO_4 at a constant hydrogen evolution current of 10 mA cm⁻².

Figure S3. Comparison of the nanoporous microstructure (SEM images) for (a) the $Al_{80}Ni_6Co_3Mn_3Y_5Au_3$ electrode and (b) $Al_{87}Au_3$ electrode after 2 hours reaction in 0.5 M H₂SO₄ at 200 mV (versus 3.5 M Ag/AgCl). The ligaments coarsen and the nanopores get closed for the $Al_{87}Au_3$ electrode.

Figure S4. XRD patterns of as-spun and dealloyed Al₈₀Ni₆Co₃Mn₃Y₅Au₃.

Reference

- [1] Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296.
- [2] J. S. Li, Y. Wang, C. H. Liu, S. L. Li, Y. G. Wang, L. Z. Dong, Z. H. Dai, Y. F. Li, Y. Q. Lan, *Nat. Commun.* **2016**, 7.
- [3] J. Yang, D. Voiry, S. J. Ahn, D. Kang, A. Y. Kim, M. Chhowalla, H. S. Shin, *Angew. Chem. Int. Edit.* **2013**, 52, 13751.
- [4] Z. Zhang, B. Lu, J. Hao, W. Yang, J. Tang, Chem. Commun. 2014, 50, 11554.
- [5] L. Liao, J. Zhu, X. J. Bian, L. N. Zhu, M. D. Scanlon, H. H. Girault, B. H. Liu, *Adv. Funct. Mater.* **2013**, 23, 5326.
- [6] W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, R. R. Adzic, *Energy Environ. Sci.* **2013**, 6, 943.
- [7] D. H. Youn, S. Han, J. Y. Kim, J. Y. Kim, H. Park, S. H. Choi, J. S. Lee, *ACS Nano* **2014**, 8, 5164.
- [8] R. Wu, J. Zhang, Y. Shi, D. Liu, B. Zhang, J. Am. Chem. Soc. 2015, 137, 6983.
- [9] D. Y. Wang, M. Gong, H. L. Chou, C. J. Pan, H. A. Chen, Y. Wu, M. C. Lin, M. Guan, J.
- Yang, C. W. Chen, Y. L. Wang, B. J. Hwang, C. C. Chen, H. Dai, J. Am. Chem. Soc. 2015, 137, 1587.
- [10] Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asiri, X. Sun, *Angew. Chem. Int. Edit.* **2014**, 53, 6710.
- [11] D. Wang, Y. J. Zhu, C. G. Tian, L. Wang, W. Zhou, Y. Dong, Q. Han, Y. Liu, F. L. Yuan, H. G. Fu, *Catal. Sci. Technol.* 2016, 6, 2403.
- [12] Y. J. Tang, M. R. Gao, C. H. Liu, S. L. Li, H. L. Jiang, Y. Q. Lan, M. Han, S. H. Yu, *Angew. Chem. Int. Edit.* **2015**, 54, 12928.
- [13] Y. Q. Sun, J. Liu, X. Lv, Y. Liu, Y. Zhao, W. Guo, Angew. Chem. Int. Edit. 2012, 51, 7634.
- [14] Y. Pan, Y. Liu, Y. Lin, C. Liu, ACS Appl. Mater. Inter. 2016, 8, 13890.
- [15] H. Yan, C. Tian, L. Wang, A. Wu, M. Meng, L. Zhao, H. Fu, *Angew. Chem. Int. Edit.* 2015, 54, 6325.
- [16] J. Deng, P. J. Ren, D. H. Deng, L. Yu, F. Yang, X. H. Bao, *Energy Environ. Sci.* 2014, 7, 1919.
- [17] J. Deng, P. Ren, D. Deng, X. Bao, Angew. Chem. Int. Edit. 2015, 54, 2100.
- [18] M. Tavakkoli, T. Kallio, O. Reynaud, A. G. Nasibulin, C. Johans, J. Sainio, H. Jiang, E. I. Kauppinen, K. Laasonen, *Angew. Chem. Int. Edit.* **2015**, 54, 4535.
- [19] D. M. Powell, R. Fu, K. Horowitz, P. A. Basore, M. Woodhouse, T. Buonassisi, *Energy Environ. Sci.* 2015, 8, 3395.
- [20] J. Wang, F. Xu, H. Y. Jin, Y. Q. Chen, Y. Wang, Adv. Mater. 2017, 29, 1605838.
- [21] X. Xin, G. Y. Xu, T. T. Zhao, Y. Y. Zhu, X. F. Shi, H. J. Gong, Z. Q. Zhang, *J. Phys. Chem.* C 2008, 112, 16377.
- [22] X. H. Zhu, M. J. Liu, Y. Liu, R. E. Chen, Z. Nie, J. H. Li, S. Z. Yao, J. Mater. Chem. A 2016, 4, 8974.
- [23] X. J. Fan, Z. W. Peng, R. Q. Ye, H. Q. Zhou, X. Guo, ACS Nano 2015, 9, 7407.
- [24] W. J. Zhou, J. Lu, K. Zhou, L. J. Yang, Y. T. Ke, Z. H. Tang, S. W. Chen, *Nano Energy* 2016, 28, 143.
- [25] Y. Zhou, W. Zhou, D. Hou, G. Li, J. Wan, C. Feng, Z. Tang, S. Chen, Small 2016, 12, 2768.
- [26] H. J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu, A. Hirata, T. Fujita, Z. Tang, M. Chen, Angew.

Chem. Int. Edit. 2015, 54, 14031.

[27] L. Fan, P. F. Liu, X. Yan, L. Gu, Z. Z. Yang, H. G. Yang, S. Qiu, X. Yao, *Nat. Commun.* 2016, 7, 10667.

[28] D. Kong, H. Wang, Z. Lu, Y. Cui, J. Am. Chem. Soc. 2014, 136, 4897.

[29] H. Yu, X. Yu, Y. Chen, S. Zhang, P. Gao, C. Li, Nanoscale 2015, 7, 8731.

[30] L. Chang, S. Chang, W. Han, W. Chen, Z. Li, Z. Zhang, Y. Dai, D. Chen, *RSC Adv.* **2016**, 6, 86829.

[31] L. L. Feng, M. H. Fan, Y. Y. Wu, Y. P. Liu, G. D. Li, H. Chen, W. Chen, D. J. Wang, X. X. Zou, *J. Mater. Chem. A* **2016**, 4, 6860.

[32] Q. Li, Z. C. Xing, A. M. Asiri, P. Jiang, X. P. Sun, Int. J. Hydrogen Energy 2014, 39, 16806.

[33] S. F. Wang, X. Q. Li, H. Wu, Z. Z. Tian, Q. P. Xin, G. W. He, D. D. Peng, S. L. Chen, Y. Yin, Z. Y. Jiang, M. D. Guiver, *Energy Environ. Sci.* **2016**, 9, 1863.

[34] M. L. Zou, J. D. Chen, L. F. Xiao, H. Zhu, T. T. Yang, M. Zhang, M. L. Du, *J. Mater. Chem.* A 2015, 3, 18090.

[35] J. Duan, S. Chen, B. A. Chambers, G. G. Andersson, S. Z. Qiao, Adv. Mater. 2015, 27, 4234.

[36] S. Chen, J. J. Duan, Y. H. Tang, B. Jin, Q. S. Zhang Nano Energy 2015, 11, 11.

[37] A. Behranginia, M. Asadi, C. Liu, P. Yasaei, B. Kumar, P. Phillips, T. Foroozan, J. C. Waranius, K. Kim, J. Abiade, R. F. Klie, L. A. Curtiss, A. Salehi-Khojin, *Chem. Mater.* 2016, 28, 549.

[38] J. Ekspong, T. Sharifi, A. Shchukarev, A. Klechikov, T. Wågberg, E. Gracia-Espino, *Adv. Funct. Mater.* **2016**, 26, 6766.

[39] N. Zhang, S. Gan, T. Wu, W. Ma, D. Han, L. Niu, ACS Appl. Mater. Interfaces. 2015, 7, 12193.

[40] H. Xu, F. M. Wang, Z. X. Wang, X. Y. ZHan, Q. S. Wang, Z. Z. Cheng, M. Safdar, J. He, *ACS Nano* **2014**, 8, 8468.

[41] T. F. Jaramilo, J. Bonde, J. D. zhang, B. L. Ooi, K. Andersson, J. Ulstrup, I. Chorkendorff, J. *Phys. Chem. C* **2008**, 112, 45.

[42] T. R. Hellstern, J. Kibsgaard, C. Tsai, D. W. Palm, L. A. King, F. Abild-Pedersen, T. F. Jaramillo, *ACS Catalysis* **2017**, 7, 7126.

[43] J. Huang, Z. Yu, M. H. Li, N. Li, J. Zhou, Y. G. Zheng, Biotechniques 2015, 59, 193.

[44] J. Kibsgaard, T. F. Jaramillo, F. Besenbacher, Nat. Chem. 2014, 6, 248.

[45] Y. Wang, Y. M. Sun, H. B. Liao, S. N. Sun, S. Z. Li, J. W. Ager, Z. J. Xu, *Electrochim. Acta* **2016**, 209, 440.

[46] E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, J. Am. Chem. Soc. 2013, 135, 9267.

[47] Y. W. Tan, H. Wang, P. Liu, C. Cheng, F. Zhu, A. Hirata, M. W. Chen, *Adv. Mater.* **2016**, 28, 2951.

[48] J. Kibsgaard, C. Tsai, K. Chan, J. D. Benck, J. K. Nørskov, F. Abild-Pedersen, T. F. Jaramillo, *Energy Environ. Sci.* 2015, 8, 3022.

[49] Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov, T. F. Jaramillo, *Science* 2017, 355.

[50] G. Jung, F. Weng, A. Su, J. Wang, T. Leonyu, H. Lin, T. Yang, S. Chan, *Int. J. Hydrogen Energ.* **2008**, 33, 2413.

[51] M. N. Tsampas, A. Pikos, S. Brosda, A. Katsaounis, C. G. Vayenas, Electrochim. Acta 2006,

51, 2743.

- [52] F. Q. Liu, B. L. Yi, D. M. Xing, J. R. Yu, H. M. Zhang, J. Membrane Sci. 2003, 212, 213.
- [53] M. T. Colomer, M. A. Anderson, J. non-cryst. solids 2001, 290, 93.
- [54] Z. H. Wang, H. R. Yu, J. F. Xia, F. F. Zhang, F. Li, Y. Z. Xia, Y. H. Li, *Desalination* **2012**, 299, 50.
- [55] J. N. Martins, M. Kersch, V. Altstädt, R. V. B. Oliveira, Polym. Test. 2013, 32, 862.
- [56] A. Magistris, P. Mustarelli, F. Parazzoli, E. Quartarone, P. Piaggio, A. Bottino, J. Power Source 2001, 97, 657.
- [57] R. G. Zhao, W. B. Luo, H. M. Xiao, G. Z. Wu, T. Nonferr. Metal. Soc. 2006, 16, s498.
- [58] Y. Show, H. Itabashi, Diam. Relat. Mater. 2008, 17, 602.
- [59] J. Wang, Z. Wei, H. Wang, Y. Chen, Y. Wang, J. Mater. Chem. A 2017, 5, 10510.