Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Green synthesis of polypyrrole tubes using curcumin template for excellent electrochemical performance in supercapacitors

Jincy Parayangattil Jyothibasu^{a,b} and Rong-Ho Lee^{*a}

^aDepartment of Chemical Engineering, National Chung Hsing University, Taichung 402,

Taiwan

^bDepartment of Environmental Engineering, National Chung Hsing University, Taichung 402,

Taiwan

Fig. S1 Chemical structure of curcumin.

Fig. S2 (a) SEM image of PPyC1T1. (b, c) High-magnification SEM images of (b) PPyC1T2 and (c) PPyC1T4. (d) SEM image of PPy nanoparticles synthesized in the absence of the template. Inset to (b): TEM image of PPyC1T2.

Fig. S3 Schematic representation of the mechanism of formation of tubular PPy (PPyT) at various concentrations of curcumin.

Fig. S4 SEM image of the PPy nanoparticle/*f*-CNT composite film.

Fig. S5 FTIR spectra of (a) curcumin, PPy, PPyC1T2, PPyC1T4, PPyC2T2, and PPyC3T2 and (b) the *f*-CNTs and the PPyC3T2/*f*-CNT composite.

Fig. S6 Nitrogen adsorption/desorption isotherms of PPyC1T2, PPyC1T4, PPyC2T2, and PPyC3T2; insets: corresponding pore size distribution curves.

Fig. S7 CV curves, recorded at scan rates from 5 to 50 mV s⁻¹, of (a) the PPyC1T2/*f*-CNT freestanding electrode, (b) the PPyC1T4/*f*-CNT freestanding electrode, and (c) the *f*-CNT freestanding electrode.

Fig. S8 GCD curves, recorded at current densities from 2 to 6 mA cm⁻², of the (a) PPyC1T2/*f*-CNT, (b) PPyC1T4/*f*-CNT, and (c) *f*-CNT freestanding electrodes.

Fig. S9 Electrochemical performance of the PPy nanoparticle/*f*-CNT freestanding electrode in a three-electrode system. (a) CV curves recorded at a scan rate of 5 mV s⁻¹. (b) GCD curves recorded at a current density of 2 mA cm⁻². (c) Nyquist plots determined using EIS.

Fig. S10 CV curves, recorded at scan rates from 5 to 50 mV s⁻¹, of the (a) PPyC2T2/*f*-CNT and (b) PPyC3T2 freestanding electrodes.

Fig. S11 GCD curves, recorded at current densities from 2 to 6 mA cm⁻², of the (a) PPyC2T2/*f*-CNT and (b) PPyC3T2 freestanding electrodes.

Fig. S12 (a) Gravimetric and (b) volumetric capacitances of the PPyC1T2/*f*-CNT, PPyC1T4/*f*-CNT, PPyC2T2/*f*-CNT, PPyC3T2/*f*-CNT, PPyC3T2, and *f*-CNT freestanding electrodes, plotted with respect to the current density.

Fig. S13 Electrochemical performance of the PPyC3T2/*f*-CNT-thick freestanding electrode having a high mass loading of 30 mg cm⁻², measured in a three-electrode system. (a) GCD curves recorded at current densities from 20 to 60 mA cm⁻². (b) Cyclic performance recorded at a high current density of 90 mA cm⁻² for 10,000 charge/discharge cycles. (c) EIS spectra recorded before and after the cycling life test. (d) Gravimetric capacitances plotted with respect to the current density. (e) SEM image of PPyC3T2/*f*-CNT-thick freestanding electrode after cycling test.

Fig. S14 GCD curves recorded at higher current densities, from 20 to 120 mA cm⁻², for the symmetric supercapacitor incorporating PPyC3T2/*f*-CNT-thick freestanding electrodes.

Table S1 Capacitive performances of conducting polymer-based composite electrodes reported

 previously in the literature and in this present paper

Electrode materials	Active material loading	Current collector	Areal capacitance of electrode (<i>C</i> _A)	Reference
PPy tubes/ <i>f</i> -CNTs	30.0 mg cm ⁻²	Freestanding electrode without current collector	11,830.4 mF cm ⁻² (295.8 F cm ⁻³) (394.4 F g ⁻¹) at a current density of 2 mA cm ⁻²	This study
PPy-coated CNT paper	12.1 mg cm ⁻²	Freestanding electrode	8604.5 mF cm ⁻² at a current density of 1 mA cm ⁻²	J. Mater. Chem. A, 2019, 7, 10751– 10760
Tiron-doped PPy/MWCNT composite electrode	27 mg cm ⁻²	Ni foam	7.8 F cm ⁻² at a scan rate of 0.5 mV s ⁻¹	J. Appl. Polym. Sci., 2015, 132 , 42376.
PPy hydrogel	20 mg cm ⁻²	Carbon cloth	6.4 F cm ⁻² at a current density of 0.14 A g ⁻¹	J. Mater. Chem. A, 2014, 2 , 6086– 6091
Porous polyaniline/reduced graphene oxide composite material	7.1 mg cm ⁻²	Freestanding electrode	5830 mF cm ⁻² at a current density of 15.72 mA cm ⁻² (824 F g ⁻¹ at 2.22 A g ⁻¹)	Energy Environ. Sci., 2018, 11 , 1280–1286
Nanostructured PPy/ MWCNT networks on cotton fabrics	_	Freestanding electrode	5.05 F cm ⁻² at a scan rate of 1 mV s ⁻¹	<i>Cellulose</i> , 2019, 26 , 4071–4084.
PPy-coated CNTs	18 mg cm ⁻²	Ni foam	4.798 F cm ⁻² at a scan rate of 2 mV s ⁻¹	J. Mater. Chem. A, 2014, 2 , 14666– 14673
PPy-coated air-laid paper	_	Freestanding electrode	3100 mF cm ⁻² at a current density of 1	Adv. Energy Mater., 2017, 7 ,

			mA cm ⁻²	1701247
PPy nanofiber–MWCNT electrodes	30 mg cm ⁻²	Ni foam	4.62 F cm ⁻² at a scan rate of 2 mV s ⁻¹	J. Mater. Chem. A, 2013, 1, 11614– 11622
PPy-coated knitted fabric	12.3 mg cm ⁻²	Freestanding electrode	4117 mF cm ⁻² at a current density of 2 mA cm ⁻²	J. Mater. Chem. A, 2016, 4, 12981– 12986
Cellulose nanofiber/cellulose- derived carbon sheet/ polyaniline nanocomposite film	_	Freestanding electrode	$3297.2 \text{ mF cm}^{-2}$ $(220 \text{ F g}^{-1}) \text{ at a}$ current density of 1 $mA \text{ cm}^{-2}$	J. Mater. Chem. A, 2016, 4, 13352– 13362
Polypyrrole/nylon membrane composite film	5 mg cm ⁻²	Freestanding electrode	2911.4 mF cm ⁻² at a current density of 1 mA cm ⁻²	<i>J. Materiomics,</i> 2019, DOI: <u>https://doi.org/10.</u> <u>1016/j.jmat.2019.1</u> <u>1.004</u> .
Microfibrillated cellulose fiber (MCF) framework/ chitosan-derived N-self-doped carbon sheet (N-CS)/PANI composite electrode	_	Freestanding electrode	1688.8 mF cm ⁻² (139.6 F g ⁻¹ , 84.4 F cm ⁻³) at a current density of 1 mA cm ⁻²	J. Mater. Chem. A, 2018, 6 , 20338– 20346
PANI/CNT/air-laid paper composite electrode	3.32 mg cm ⁻²	Freestanding electrode	1506 mF cm ⁻² at a current density of 10 mA cm ⁻²	J. Mater. Chem. A, 2017, 5 , 19934– 19942
PPy-coated cotton fabrics	5.7 mg cm ⁻²	Freestanding electrode	1325 mF cm ⁻² at 2 mA cm ⁻²	<i>RSC Adv.</i> , 2017, 7 , 48934–48941
PPy/paper composite electrode	3.54 mg cm ⁻²	Freestanding electrode	1.5 F cm ⁻² at 1 mA cm ⁻²	Energy Environ. Sci., 2013, 6 , 470– 476
Polypyrrole on vertically aligned carbon nanotube arrays/carbon fiber paper	0.84 mg cm ⁻²	Carbon fiber paper	0.78 F cm ⁻² at 2 mV s ⁻¹	J. Mater. Chem. A, 2015, 3 , 22043– 22052

(PPy/VA-CNTs/CFP)				
Polyaniline/carbon nanotubes/graphene/polyester textile electrode	_	Freestanding electrode	791 mF cm ⁻² at a current density of 1.5 mA cm ⁻²	<i>Electrochim. Acta</i> , 2017, 249 , 387– 394
Carbon nanotube/polyaniline hydrogel film	_	Freestanding electrode	680 mF cm ⁻² at 1 mA cm ⁻²	J. Mater. Chem. A, 2015, 3 , 23864– 23870
PEDOT nanowire film	_	Freestanding electrode	667.5 mF cm ⁻² at 1 mA cm ⁻²	J. Mater. Chem. A, 2019, 7 , 1323– 1333
rGO/PPy NT paper	2.46 mg cm ⁻²	Carbon paper	807 mF cm ⁻² at 1 mA cm ⁻²	<i>J. Power Sources</i> , 2016, 302 , 39–45
Graphene/activated carbon/polypyrrole (GN/AC/PPy)	2.75 mg cm ⁻²	Freestanding electrode	906 mF cm ⁻² at a current density of 0.5 mA cm ⁻²	RSC Adv., 2017, 7 , 31342–31351
Free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers	_	Freestanding electrode	1.20 F cm ⁻² at 2 mA cm ⁻²	J. Mater. Chem. A, 2017, 5 , 3819– 3831
CuO NWAs@PEDOT:PSS composite electrode	_	Cu foam	907.5 mF cm ⁻² at 3 mA cm ⁻²	J. Mater. Sci.: Mater. Electron., 2019, 30 , 10953– 10960
PEDOT/CC hybrid electrode	_	Carbon cloth	201.4 mF cm ⁻² at 1 mA cm ⁻²	Nanotechnology, 2016, 27 , 385705
rGO-PEDOT/PSS film	8.49 mg cm ⁻²	Freestanding electrode	448 mF cm ⁻² at a scan rate of 10 mV s ⁻¹	<i>Sci. Rep.</i> , 2015, 5 , 17045