Electronic Supplementary Information

 10 cm^2 nonfullerene solar cells with efficiency over 10% using H_xMoO₃-

assisted growth of silver electrodes with a low threshold thickness of 4 nm

Xueshi Jiang, Lulu Sun, Wen Wang, Fei Qin, Cong Xie, Lin Hu, and Yinhua Zhou*

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

*Corresponding author. Email: <u>yh_zhou@hust.edu.cn</u>

Area	PCE	Year	Ref.	
[cm ²]	[%]			
3.48	8.6	2018	[1]	
8	6	2018	[2]	
18	6.3	2018	[3]	
60	5	2018	[4]	
2	6	2019	[5]	
3.2	8.1	2019	[6]	

Table S1. Summary of nonfullerene large-area (> 2 cm²) device in previous reports.¹⁻⁶

Table S2. Photovoltaic parameters of OSCs with MoO_3 and H_xMoO_3 as HTL. The device structure is glass/ITO/ZnO/PM6:IT-4F/HTL/Ag. All devices were measured under 100 mW cm⁻² AM 1.5G illumination.

Area [cm ²]	HTL	$J_{\rm sc}$ [mA/cm ²]	V _{oc} [V]	FF	PCE [%]
0.1	MoO ₃	20.37	0.86	0.76	13.34
0.1	H _x MoO ₃	19.76	0.85	0.75	12.63

Figure S1. X-ray diffraction (XRD) pattern of H_xMoO₃.

Figure S2. Optical transmittance of transparent electrode with different antireflective MoO_3 thickness when the thickness of Ag is fixed at 8 nm.

Figure S3. Optically simulated photocurrent, assuming the IQE=100%, of top-illuminated device as a function of thicknesses of ut-Ag and MoO₃ ARL.

Figure S4. (a) Current density-voltage (*J-V*) characteristics under AM 1.5G illumination of 10 cm² solar cell on ITO. The device structure is ITO/ZnO/PM6:IT-4F/MoO₃/Ag. (b) Histogram distribution of open-circuit voltage for 10 cm² devices on ITO and thick opaque Ag on H_x MoO₃.

Figure S5. Normalized photovoltaic parameters of (a) ut-Ag cell (glass/H_xMoO₃/70-nm Ag/ZnO/PM6:IT-4F/H_xMoO₃/ut-Ag/MoO₃) and (b) reference cell (ITO/ZnO/PM6:IT-4F/MoO₃/Ag) under continuous a LED white light illumination up to 680 hours.

Figure S6. Atomic force microscope (AFM) images of 6-nm Ag on different surface: (a) glass; (b) MoO_3 ; (c) H_xMoO_3 . The dash lines indicate the position of sectional height distribution shown underneath.

Figure S7. Atomic force microscope (AFM) images of 8-nm Ag on different surface: (a) glass; (b) MoO_3 ; (c) H_xMoO_3 . The dash lines indicate the position of sectional height distribution shown underneath.

Figure S8. O 1s XPS spectrum of 70-nm Ag deposited on glass. The peak at 532 eV was assigned to the dissolved oxygen in silver bulk^{7, 8}.

References:

- 1. T. Zhang, G. Zeng, F. Ye, X. Zhao and X. Yang, Advanced Energy Materials, 2018, 8, 1801387.
- 2. L. Mao, L. Sun, B. Luo, Y. Jiang and Y. Zhou, *Journal of Materials Chemistry A*, 2018, **6**, 5817-5824.
- 3. L. Mao, B. Luo, L. Sun, S. Xiong, J. Fan, F. Qin, L. Hu, Y. Jiang, Z. Li and Y. Zhou, *Materials Horizons*, 2018, 5, 123-130.
- S. Strohm, F. Machui, S. Langner, P. Kubis, N. Gasparini, M. Salvador, I. McCulloch, H. J. Egelhaaf and C. J. Brabec, *Energy & Environmental Science*, 2018, 11, 2225-2234.
- D. Corzo, K. Almasabi, E. Bihar, S. Macphee, D. Rosas-Villalva, N. Gasparini, S. Inal and D. Baran, Advanced Materials Technologies, 2019, 4, 1900040.
- 6. L. Sun, X. Jiang and Y. Zhou, Journal of Energy Chemistry, 2019, 37, 220-224.
- A. I. Boronin, S. V. Koscheev and G. M. Zhidomirov, *Journal of Electron Spectroscopy and Related Phenomena*, 1998, 96, 43-51.
- 8. X. Bao, M. Muhler, T. Schedel-Niedrig and R. Schlögl, Physical Review B, 1996, 54, 2249-2262.