Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

MOF-Derived Conductive Carbon Nitrides for Separator-Modified

Li-S Batteries and Flexible Supercapacitors

Jingsheng Cai^{‡a}, Yingze Song^{‡a}, Xiang Chen^{‡b}, Zhongti Sun^a, Yuyang Yi^a, Jingyu Sun^{*a}, and Qiang Zhang^{*b}

^aCollege of Energy, Soochow Institute for Energy and Materials InnovationS, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province Soochow University, Suzhou 215006, P. R. China

^bBeijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China

[‡]These authors contributed equally to this work.

*Corresponding authors: sunjy86@suda.edu.cn (J. Y. Sun); zhang-qiang@mails.tsinghua.edu.cn (Q. Zhang)

Fig. S1 XRD of the Ni-based MOF precursor.

Fig. S2 SEM image of the incomplete generated c-CN, showing that Ni serves as the catalytic center for the generation of c-CN.

Fig. S3 Digital photographs showing the preparation of c-CN with hydrophobic nature during and after the etching process.

Fig. S4 SEM image of $g-C_3N_4$ nanosheets prepared from the conventional thermal condensation of urea. The edges of nanosheets are indicated by red arrows.

Fig. S5 XPS high-resolution C 1s spectrum of (a) c-CN and (b) g-C₃N₄.

Fig. S6 TEM image of c-CN, demonstrating porosities and morphological defects.

Fig. S7 The pore size distribution of c-CN.

Fig. S8 Sheet resistance map of the $g-C_3N_4$ and MWCNTs films.

Fig. S9 Digital photograph showing the Li₂S₆ adsorption tests of g-C₃N₄, MWCNTs, and c-CN.

Fig. S10 XPS high-resolution S 2p spectrum of $g-C_3N_4$ after the adsorption test of Li_2S_6 for 3 h.

Fig. S11 Binding geometric configurations and binding energies of Li_2S_6 with g-C₃N₄, the strong interaction induces the distortion of C₃N₄ layer. The hydrogen, lithium, carbon, nitrogen, and sulfur atoms are marked with pink, brown, green, blue, and yellow, respectively.

Fig. S12 ^{13}C nuclear magnetic resonance (NMR) spectrum of g-C_3N_4 before and after Li_2S_6 adsorption.

Fig. S13 The geometrical configuration and binding energy of Li_2S_6 with defected c-CN. The lithium, carbon, and sulfur atoms are marked with brown, green, and yellow, respectively.

Fig. S14 Cross-sectional SEM and EDS characterization showing the one-side coating of c-CN on the separator after a Li_2S_6 permeation test.

Fig. S15 STEM image and corresponding elemental maps of c-CN after ${\rm Li}_2{\rm S}_6$ adsorption.

Fig. S16 TGA curve of the sulfur-graphene hybrid, showing a sulfur loss of 79.35%.

Fig. S17 CV profiles of (a) no interlayer, (b) $g-C_3N_4$ interlayer, and (c) c-CN interlayer-based cells at various scan rates from 0.1-0.5 mV s⁻¹. (d) Reaction kinetics with respect to the Li⁺ ion diffusion properties of peak ii at various scan rates.

Fig. S18 EIS of the bare PP, $g-C_3N_4$ PP and c-CN PP based cells.

Fig. S19 Galvanostatic charge–discharge curves of c-CN PP based cell at various current densities.

Fig. S20 Cyclic performance at 5.0 C of g-C₃N₄ PP and c-CN PP, respectively.

Fig. S21 SEM inspection of the c-CN PP a) before, and b) after 200 cycles at 2.0 C. c) The precipitation of solid short-chain polysulfides on the c-CN after battery cycling.

Fig. S22 EIS spectrum of c-CN-derived supercapacitor in a three-electrode configuration.

Fig. S23 Galvanostatic charge-discharge curves of c-CN at various current density of $1-10 \text{ A g}^{-1}$ in a three-electrode configuration.

Fig. S24 (a) CV profiles of c-CN-derived SSC at different scan rates of 10–100 mV s⁻¹. (b) Galvanostatic charge-discharge curves of SSC at different current densities of 1–5 A g⁻¹.

Table S1 Comparison of battery performances at high sulfur loading conditions based on variousmodified-separators between this work and other reported studies.

Coating materials	Host	Loading (mg cm ⁻²)	S conten t (wt%)	Rate (C)	Cycles	Initial capacity (mAh cm ⁻²)	Capacity decay (% per cycle)	Ref.
c-CN	Graphene	3.56	63	1.0	100	2.82	0.32	This work
		5.23	60	0.2	100	5.75	0.21	
		9.80	60	0.2	50	5.77	0.56	
MoS ₂ -PDDA	Ketjen Black	4.0	60	1.0	100	3.1	0.35	1
PAN@APP	Carbon powders	6.0	70	0.2	50	3.66	0.07	2
N-doped graphene	Graphene	3.8	61	0.3	30	4.45	1.06	3
Co ₉ S ₈	Super P	5.6	70	-	200	5.05	0.08	4
rGO@SL	Carbon powders	3.8	50	0.1	50	2.30	0.34	5
Ce- MOF/CNT	Ketjen Black	2.5	-	1.0	800	2.55	0.02	6
LDH/NG	CNTs	4.3	63	0.5	100	4.64	0.26	7
Ni ₃ (HITP) ₂ or ZIF-8	Carbon black	3.5	64	1.0	500	2.98	0.03	8

Supporting references:

- 1 J. Y. Wu, H. X. Zeng, X. W. Li, X. Xiang, Y. G. Liao, Z. G. Xue, Y. S. Ye and X. L. Xie, *Adv. Energy Mater.*, 2018, **8**, 1802430.
- T. Y. Lei, W. Chen, Y. Hu, W. Q. Lv, X. X. Lv, Y. C. Yan, J. W. Huang, Y. Jiao, J. W. Chu, C. Y. Yan,
 C. Y. Wu, Q. Li, W. D. He and J. Xiong, *Adv. Energy Mater.*, 2018, 8, 1802441.
- Q. C. Li, Y. Z. Song, R. Z. Xu, L. Zhang, J. Gao, Z. Xia, Z. N. Tian, N. Wei., M. H. Rümmeli, X. L. Zou,
 J. Y. Sun and Z. F. Liu, ACS Nano, 2018, 12, 10240-10250.
- 4 J. R. He, Y. F. Chen and A. Manthiram, *Energy Environ. Sci.*, 2018, **11**, 2560-2568.
- T. Y. Lei, W. Chen, W. Q. Lv, J. W. Huang, J. Zhu, J. W. Chu, C. Y. Yan, C. Y. Wu, Y. H. Yan, W. D.
 He, J. Xiong, Y. R. Li, C. L. Yan, J. B. Goodenough and X. F. Duan, *Joule*, 2018, 2, 2091-2104.
- 6 X. J. Hong, C. L. Song, Y. Yang, H. C. Tang, G. H. Li, Y. P. Cai and H. X. Wang, ACS Nano, 2019, 13, 1923-1931.
- 7 H. J. Peng, Z. W. Zhang, J. Q. Huang, G. Zhang, J. Xie, W. T. Xu, J. L. Shi, X. Chen, X. B. Cheng and Q. Zhang, *Adv. Mater.*, 2016, **28**, 9551-9558.
- 8 Y. Zang, F. Pei, J. H. Huang, Z. H. Fu, G. Xu and X. L. Fang, *Adv. Energy Mater.*, 2018, **8**, 1802052.