Supporting Information

Oxygen-deficient vanadium oxides@N-doped carbon heterostructure for sodium-ion batteries: insights into charge storage mechanism and enhanced reaction kinetics

Qingyuan Ren^a, Ning Qin^b, Bin Liu^c, Yuan Yao^d, Xu Zhao^e, Zhao Deng^a, Yu Li^a, Yucheng Dong^c, Dong Qian^f, Bao-Lian Su^{a,g,*}, Wenjun Zhang^{c,*}, Hong-En Wang^{a,h,*}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China. Email: <u>hongenwang@whut.edu.cn</u>

^b Department of Materials Science and Technology, Southern University of Science and Technology (SUSTC), Shenzhen, China.

^c Center Of Super Diamond & Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, HKSAR, China. Email: <u>apwjzh@cityu.edu.hk</u>

^d Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

^e Institute of Chemical Materials, Chinese Academy of Engineering Physics, Mianyang 621900, China
 ^f College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
 ^g Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, Belgium. Email: <u>bao-lian.su@unamur.be</u>

^h College of Physics and Electronics Information, Yunnan Normal University, Kunming 650500. Email: <u>hongen.wang@outlook.com</u>

Fig. S1. SEM images of the VC product, showing porous spherical morphology with a hierarchical structure.

Fig. S2. Raman spectrum of VNC sample, indicating the presence of carbon species.

Fig. S3. (a) Survey and (b) high-resolution O 1s and V 2p XPS spectra of VNC sample.

Fig. S4. N₂ adsorption/desorption isotherm curves and pore size distribution plot (inset) of vanadium oxides@N-doped C hybrid sample.

Fig. S5. HRTEM (a) and FFT pattern (b) derived from the dark-yellow square region in (a) of the VNC sample, showing the coexistence of VO and V_2O_3 nanocrystals as marked by green and red, respectively.

Fig. S6. Cyclic voltammetry (CV) curves of the VNC (a) and VC (b) electrodes in Na-half cells at 0.2 mV s^{-1} in the first three cycles.

Fig. S7. Ex-situ XRD pattern of the VNC electrode after discharge, indicating the incomplete conversion reaction of vanadium oxides during discharge.

Fig. S8. Optimized geometry structures of Na (a), VO (b), V (c), and Na₂O (d) on pristine graphene basal plane. The corresponding adsorption energies (E_{ads}) and some representative bond lengths (all with unit of Å) are also shown.

	Capacity	Capacity	Capacity	Capacity	Capacity	Capacity
Electrodes	(mAh g ⁻¹ at	(mAh g ⁻¹ at	(mAh g ⁻¹ at	(mAh g ⁻¹ at	(mAh g ⁻¹	(mAh g ⁻¹
	0.1 A g ⁻¹)	0.2 A g ⁻¹)	0.5 A g ⁻¹)	1 A g ⁻¹)	at 2 A g ⁻¹)	at 5 A g ⁻¹
Our work	260	222	204.5	191.6	177.5	166.5
porous	247	202	176	164	149	NA
V ₂ O ₃ /C ¹⁵						
M-V ₂ O ₃ ²⁷	284	242	200	167	136	NA
V ₂ O ₃ /N-doped	240	233	215	185	170	165
Carbon ²⁶						(3 A g ⁻¹)
VO ₂ /MX-1 ³⁰	297	278	265	242	206	NA
			(0.4 A g ⁻¹)	(0.8 A g ⁻¹)	(1.6 A g ⁻¹)	
V ₂ O ₃ /NG ¹⁷	193	171	150	130	115	NA
HCF-V ₂ O ₅ ³¹	190	146	112	77	NA	NA
TiO ₂ @NFG ⁶	NA	205	190	170	157	140
		(0.25 A g ⁻¹)				
TiO ₂ /C HRTs ³²	NA	225.6	210.3	191.9	168.6	141
a-Ti ₃ C ₂ MNRs ³³	108	93	85	NA	NA	NA
			(0.3 A g ⁻¹)			
Amorphous	250	205	138	100	81	NA
Carbon ³⁴	(0.06 A g ⁻	(0.3 A g ⁻¹)	(1.2 A g ⁻¹)	(2.4 A g ⁻¹)	(4.8 A g ⁻¹)	

 Table S1. Electrochemical performance comparison of our sample with some

representative anode materials for SIBs in recent literature.

	1)					
1D CNF ³⁵	NA	272	221	183	145	117
					(2.5 A g ⁻¹)	

NA: not available

	Capacity	Capacity	Capacity	Refs
Electrodes	(mAh g ⁻¹ at 1 A g ⁻¹ for 1	(mAh g^{-1} at 1 A g^{-1} for 1000	retention	
	cycle)	cycles)	rate(%)	
Our work	214	152	71	This work
porous	181	133	73.5	15
V_2O_3/C	(2 A g^{-1})	(2 A g^{-1} for 1000 cycles)		
V ₂ O ₃ /N-	180.9	134.5	74.4	26
doped		(3000 cycles)		
carbon				
VO ₂ /MX-1	185.5	143.0	77.1	30
		(200 cycles)		
HCF-V ₂ O ₅	368	184	50	31
	(0.1 A g ⁻¹)	(0.1 A g ⁻¹ for 100 cycles)		
a-Ti ₃ C ₂	75	50	66.7	33
MNRs	(0.2A g ⁻¹)	$(0.2 \text{ A g}^{-1} \text{ for 500 cycles})$		
ReS ₂ /N-	350	245	70	38
CNFs	(0.1 A g ⁻¹)	(0.1 A g ⁻¹ for 800 cycles)		
TiO ₂ @C	135.4	92.9	68.6	37
nanosheets	(5 A g ⁻¹)	(5 A g ⁻¹ for 4000 cycles)		
N@S-	520	379	73	36

Table S2. Capacity retention comparison of our sample with some representative

anode materials for SIBs in recent literature.

Carbon (0.1 A g^{-1})	$(0.1 \text{ A g}^{-1} \text{ for } 1000 \text{ cycles})$
---------------------------------	---