Synthesis of high-performance polycrystalline metalorganic framework membranes at room temperature in a few minutes

Jian Hao,^{a, b} Deepu J. Babu,^a* Qi Liu,^a Heng-Yu Chi,^a Chunxiang Lu,^b Yaodong Liu^b and Kumar Varoon Agrawal^a*

^a Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Switzerland

^b CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan, 030001, China

Corresponding author: E-mail: <u>kumar.agrawal@epfl.ch</u>, <u>deepu.babu@epfl.ch</u>

Preparation of Precursor Solutions:

Metal and ligand solutions for ZIFs synthesis were prepared by separately dissolving 2.75 g zinc nitrate hexahydrate (\geq 99.0%, Sigma-Aldrich), 2.69 g cobalt nitrate hexahydrate (98%, Sigma-Aldrich) and 56.75 g HmIm (99%, Acros) in 500 ml deionized (DI) water. For ZIF-90 synthesis, 0.74 g zinc nitrate hexahydrate and 2.40 g HIca (97%, abcr GmbH) in 500 ml DI water respectively.

Characterization:

SEM images were collected on the FEI Teneo scanning electron microscope at an electron beam voltage of 1 kV to observe the surface and the cross-section of ZIF membranes. Dynamic light scattering (DLS, Malvern Nano ZS) was used to characterize the particle size of the ZIF-8 precursor solution at different dwell times. For the DLS experiments, the ZIF-8 precursor solution was prepared under the same condition as that for the ZIF-8 film. For measurements, 1 ml of the precursor solution at a certain dwell time was transferred into a 20 ml glass bottle containing 9 ml of deionized water at 0 °C to quench the reaction. After shaking the glass bottle for a few seconds, 2 ml of the diluted precursor solution was added into the sample cell to quickly start the measurement. Each sample was measured for a duration of 2 min for 3 times. Precursor solutions without dilution were also measured. The concentration of the HmIm in the ZIF-8 precursor solution was determined by a UV-Vis spectrophotometer (PerkinElmer LAMBDA 365). First, a series of HmIm solutions with known concentrations ranging from 2×10^{-6} to 2×10^{-4} mol L⁻¹ was measured using UV absorbance (205 nm) to prepare a calibration dataset. Then, similar to DLS experiments, the ZIF-8 precursor solution was diluted in deionized water at 0 °C by 10000 times and quickly collected for the measurement. The measurements were conducted at least twice. Fourier transform infrared spectra (FTIR, PerkinElmer Spectrum twoTM) were collected by 32 scans with a resolution of 2 cm⁻¹ in the range of 4000 - 400 cm⁻¹. The crystal structure of the films was analyzed by X-ray diffraction (XRD, Bruker D8 discover diffractometer) between 5 and 30° 20 at a rate of 1.5 s/step and a step size of 0.02°.

Gas Permeation Measurements:

The gas permeation measurements were carried out on a homemade Wicke-Kallenbach type permeation cell (Figure S12). All gases were delivered into the membrane cell by pre-calibrated mass flow controllers (MKS Instruments). The pressure of the feed and the permeate side was maintained at 1 bar. High purity Ar (99.999 %) was used as the sweep gas. The permeate compositions were analyzed using a calibrated mass spectrometer (Hiden Analytical, HPR-20). The as-synthesized membranes were sealed by epoxy on a stainless-steel disk with a hole of 5 mm diameter in the center. ZIFs/AAO membranes were heated inside an oven at 130 °C under the H₂/Ar atmosphere to remove the absorbed gases and moisture. All the measurements were recorded after reaching a steady state.

Figure S1. ZIF-8 nuclei film deposited on an AAO substrate with 100 nm pores under different magnifications.

Figure S2. The hydrodynamic diameter of ZIF-8 particles in the precursor solution at different growth time.

Figure S3. The change of pH value in ZIF-8 precursor solutions at different growth time by a) the ENACT and b) the CUSP approach.

Figure S4. SEM images of ZIF-8 membrane synthesized with a dwell time of 3 min under a) 10 and b) 15 min of growth. Scale bars: $2 \mu m$.

Figure S5. ZIF-8 nuclei film on AAO substrate holding 20 nm pores.

Figure S6. Cross-sectional view of ZIF-8 membrane prepared using 8 min of growth.

Figure S7. a) Photograph of Y-configuration mixing tube, and b) the top view of ZIF-8 membrane synthesized in 6 min by this approach.

Figure S8. SEM images revealing a) poor heterogeneous nucleation of ZIF-90 on the porous support, and b) poor intergrowth of film in (a).

Figure S9. SEM images of ZIF-90 film synthesized in methanol showing cracks formed during activation.

Figure S10. a) Top view and b) cross-sectional view of a defective ZIF-8 film as a substrate for ZIF-90 growth.

Figure S11. The CUSP setup.

Figure S12. Schematic illustration of the gas permeance measurement set up.

Somela	H ₂ permeance	Ideal selectivity				
Sample	$(mol m^{-2} s^{-1} Pa^{-1})$	$\mathrm{H_2/CH_4}$	$\rm CO_2/\rm CH_4$	H_2/C_3H_6	C_3H_6/C_3H_8	
ZIF-8 on 20 nm AAO	1.6×10 ⁻⁶	8.8	3.6	78.7	30.9	
ZIF-8 on 100 nm AAO	1.9×10 ⁻⁶	8.5	3.9	69.6	17.2	
ZIF-8 on 100 nm AAO	2.1×10-6	13.9	3.8	122.5	13.7	
ZIF-8 on 100 nm AAO	1.0×10 ⁻⁶	9.4	2.7	49.8	8.2	
ZIF-67 on 100 nm AAO	1.9×10 ⁻⁶	9.1	4.0	98.4	11.3	
ZIF-8-67/AAO hybrid membrane	2.3×10 ⁻⁶	9.3	1.5	59.3	6.1	
ZIF-8-90/AAO hybrid membrane	6.3×10 ⁻⁷	19.2	7.9	79.1	C_3H_8 below the detection limit.	
ZIF-8-90/AAO hybrid membrane	4.8×10 ⁻⁷	16.3	7.5	107.1	10.7	

Table S1. Gas separation data from membranes in this study at 25 °C.

Table S2. Gas permeance data of MOF membranes in literature at 25 °C. Permeance given in units of mol $m^2 s^{-1} Pa^{-1}$.

MOF	H_2	CO_2	CH_4	$\mathrm{H_2/CH_4}$	$\rm CO_2/\rm CH_4$	Membrane thickness/µm	Synthesis period	Reference
ZIF-8	3.5×10 ⁻⁶	1.1×10 ⁻⁶	1.2×10 ⁻⁷	30.7	9.4	0.017	2 h	1
ZIF-7-8	3.0×10-7	6.0×10 ⁻⁸	1.4×10 ⁻⁸	21.4	4.3	1~2	24 h	2
ZIF-8	8.3×10 ⁻⁶	1.1×10 ⁻⁶	5.1×10 ⁻⁷	16.2	2.2	0.5	10 h	3
ZIF-8	2.0×10-6	4.6×10 ⁻⁷	1.4×10 ⁻⁷	14.3	3.3	15	40 h	4
ZIF-8	3.0×10 ⁻⁷	5.0×10 ⁻⁸	1.0×10 ⁻⁸	30.0	5.0	15	40 h	4
ZIF-8	2.7×10-7	1.6×10 ⁻⁸	6.4×10-9	41.9	2.4	20	48 h	5
ZIF-8	1.2×10 ⁻⁷	6.4×10 ⁻⁸	1.0×10 ⁻⁸	12.3	6.4	6.8	24 h	6
ZIF-67	2.8×10-7	3.1×10 ⁻⁸	5.8×10-9	48.2	5.4	3	48 h	7
ZIF-90	5.7×10-7	4.8×10-7	8.1×10 ⁻⁸	7.1	5.9	3.1	44 h	8
ZIF-90 (200 °C)	2.5×10-7	3.5×10 ⁻⁸	1.6×10 ⁻⁸	15.9	2.2	20	18 h	9
ZIF-90 (200 °C)	2.1×10 ⁻⁷	1.3×10 ⁻⁸	1.1×10 ⁻⁸	19.3	1.2	20	28 h	10
ZIF-8-90	6.3×10 ⁻⁷	2.6×10-7	3.3×10 ⁻⁸	19.2	7.9	0.9	20 min	This work
ZIF-8-90	3.4×10-7	1.6×10-7	2.1×10-8	16.3	7.5	0.9	20 min	This work

References:

- W. Li, P. Su, Z. Li, Z. Xu, F. Wang, H. Ou, J. Zhang, G. Zhang and E. Zeng, *Nat. Commun.*, 2017, 8, 1–8.
- 2 F. Hillman, J. Brito and H.-K. Jeong, ACS Appl. Mater. Interfaces, 2018, 10, 5586–5593.
- 3 G. He, M. Dakhchoune, J. Zhao, S. Huang and K. V. Agrawal, *Adv. Funct. Mater.*, 2018, 28, 1707427.
- 4 W. Li, W. Wu, Z. Li, J. Shi and Y. Xia, J. Mater. Chem. A, 2018, 6, 16333–16340.
- 5 X. Wu, C. Liu, J. Caro and A. Huang, J. Memb. Sci., 2018, 559, 1–7.
- 6 X. Jiang, S. Li, Y. Bai and L. Shao, J. Mater. Chem. A, 2019, 7, 10898–10904.
- 7 P. Nian, Y. Li, X. Zhang, Y. Cao, H. Liu and X. Zhang, ACS Appl. Mater. Interfaces, 2018, 10, 4151–4160.
- 8 K. Eum, C. Ma, D.-Y. Koh, F. Rashidi, Z. Li, C. W. Jones, R. P. Lively and S. Nair, *Adv. Mater. Interfaces*, 2017, 4, 1700080.
- 9 A. Huang, W. Dou and J. Caro, J. Am. Chem. Soc., 2010, 132, 15562–15564.
- 10 A. Huang and J. Caro, Angew. Chemie Int. Ed., 2011, 50, 4979–4982.