# **Supplementary Information**

## Rational design of Cu-Co thiospinel ternary sheet arrays for high

### efficient electrocatalytic water splitting

Nan Zang<sup>a</sup>, Zexing Wu<sup>c</sup>, Jie Wang<sup>b,\*</sup>, Wei Jin<sup>a,\*</sup>

<sup>a</sup> School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.

<sup>b</sup> College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.

<sup>c</sup> State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, China.

\* Corresponding author.



Fig. S1 The XRD patterns of  $FeS_2/CoFe_2O_4$  (a) and  $CuS/CuFeS_2$  (b) samples.



Fig. S2 The XRD patterns of  $CuCo_2S_4$  TSA obtained at 120 °C and 180 °C.



**Fig. S3** The SEM (a) and TEM (b) images of  $CuCo_2S_4$  TSA obtained at 120 °C; the SEM (c) and TEM (d) images of  $CuCo_2S_4$  TSA obtained at 180 °C.



Fig. S4 SEM image of ternary  $CuCo_2S_4$  TSA and the corresponding EDS mapping of Cu, Co, S elemental distribution.



**Fig. S5** The full range XPS spectra of CuCo<sub>2</sub>S<sub>4</sub> TSA, FeS<sub>2</sub>/CoFe<sub>2</sub>O<sub>4</sub> and CuS/CuFeS<sub>2</sub> samples.



**Fig. S6** High-resolution XPS spectra of the Fe 2p for FeS<sub>2</sub>/CoFe<sub>2</sub>O<sub>4</sub> and CuS/CuFeS<sub>2</sub> samples.



Fig. S7 (a) OER polarization curves of Co-S, Cu-S and Fe-S and the corresponding Tafel plots (b).



Fig. S8 OER (a) and HER (b) polarization curves of CuCo<sub>2</sub>S<sub>4</sub> TSA and CuCo<sub>2</sub>S<sub>4</sub> without carbon felt.



Fig. S9 (a) HER polarization curves of Co-S, Cu-S and Fe-S and the corresponding Tafel plots (b).



Fig. S10 Cyclic voltammograms of (a) CuS/CuFeS<sub>2</sub> and (b)  $FeS_2/CoFe_2O_4$  with a potential window

from 1.1 to 1.2 V at different scan rates in 1.0 M KOH.



Fig. S11 Electrical equivalent circuit models for fitting the EIS response on the binary electrodes,

where  $R_s$  is the solution resistance,  $R_{ct}$  represents the charge transfer resistance.



Fig. S12 Cyclic voltammograms of (a) CuS/CuFeS<sub>2</sub> and (b) FeS<sub>2</sub>/CoFe<sub>2</sub>O<sub>4</sub> with a potential window

from -0.1 to 0 V at different scan rates in 1.0 M KOH.



Fig. S13 LSV curves of  $CuCo_2S_4$  nanoarrays electrode at the initial potential cycle and after 5000 and 10000 cycles.

| Electrolyte | Overpotential (mV)                                                                                                                                                                   | Tafel slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | @ 10 mA cm <sup>-2</sup>                                                                                                                                                             | (mV dec⁻¹)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.0 M KOH   | 210                                                                                                                                                                                  | 43.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | This work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.0 M KOH   | 330                                                                                                                                                                                  | 75.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | This work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.0 M KOH   | 310                                                                                                                                                                                  | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.0 M KOH   | 350                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.0 M KOH   | 367                                                                                                                                                                                  | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.0 M KOH   | 430                                                                                                                                                                                  | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.0 M KOH   | 324                                                                                                                                                                                  | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.0 M KOH   | 389                                                                                                                                                                                  | 61.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.0 M KOH   | 260                                                                                                                                                                                  | 40.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.0 M KOH   | 290                                                                                                                                                                                  | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.0 M KOH   | 340                                                                                                                                                                                  | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.0 M KOH   | 240                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.0 M KOH   | 273                                                                                                                                                                                  | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1 M KOH   | 321                                                                                                                                                                                  | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.0 M KOH   | 306                                                                                                                                                                                  | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.0 M KOH   | 260                                                                                                                                                                                  | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | Electrolyte<br>1.0 M KOH<br>1.0 M KOH | Electrolyte       Overpotential (mV)         @ 10 mA cm <sup>-2</sup> 1.0 M KOH       210         1.0 M KOH       330         1.0 M KOH       310         1.0 M KOH       350         1.0 M KOH       367         1.0 M KOH       367         1.0 M KOH       430         1.0 M KOH       324         1.0 M KOH       389         1.0 M KOH       260         1.0 M KOH       240         1.0 M KOH       240         1.0 M KOH       273         0.1 M KOH       321         1.0 M KOH       326         1.0 M KOH       260 | Electrolyte         Overpotential (mV)         Tafel slope           @ 10 mA cm <sup>-2</sup> (mV dec <sup>-1</sup> )           1.0 M KOH         210         43.8           1.0 M KOH         330         75.9           1.0 M KOH         310         86           1.0 M KOH         350         55           1.0 M KOH         367         40           1.0 M KOH         367         40           1.0 M KOH         324         43           1.0 M KOH         324         43           1.0 M KOH         260         40.1           1.0 M KOH         290         67           1.0 M KOH         340         49           1.0 M KOH         240         55           1.0 M KOH         240         55           1.0 M KOH         273         66           0.1 M KOH         321         58           1.0 M KOH         306         72           1.0 M KOH         306         72 |

**Table S1.** Comparative electrochemical OER performances of different electrocatalytic materials

 in alkaline medium.

| Catalysts                                                            | Electrolyte                         | Overpotential            | Tafel                   | Ref  |
|----------------------------------------------------------------------|-------------------------------------|--------------------------|-------------------------|------|
|                                                                      |                                     | (mV)                     | slope                   |      |
|                                                                      |                                     | @ 10 mA cm <sup>-2</sup> | (mV dec <sup>-1</sup> ) |      |
| CuCo <sub>2</sub> S <sub>4</sub>                                     | 1.0 M KOH                           | 69                       | 55.4                    | This |
|                                                                      |                                     |                          |                         | work |
| FeS₂@C                                                               | 1.0 M KOH                           | 195                      | 127                     | 15   |
| Nb <sub>2</sub> Se <sub>9</sub> 3                                    | 0.5M H <sub>2</sub> SO <sub>4</sub> | 160                      | 63.7                    | 16   |
| V-Ni <sub>2</sub> P NSAs/CC                                          | 1.0 M KOH                           | 85                       | 95                      | 17   |
| Al-Ni <sub>2</sub> P/TM                                              | 1.0 M KOH                           | 129                      | 98                      | 18   |
| 3% CoS <sub>2</sub> -7% CuS                                          | 1.0 M KOH                           | 85                       | 46                      | 19   |
| NiCo <sub>2</sub> S <sub>4</sub> /Ni <sub>3</sub> S <sub>2</sub> /Ni | 1.0 M KOH                           | 119                      | 105.2                   | 20   |
| NiCo <sub>2</sub> S <sub>4</sub> /CC                                 | 1.0 M KOH                           | 263                      | 141                     | 21   |
| CoS <sub>2</sub> HNSs                                                | 1.0 M KOH                           | 290                      | 100                     | 22   |
| Ni <sub>3</sub> FeN/carbon cloth                                     | 1.0 M KOH                           | 105                      | 61                      | 23   |
| $MoS_2 - Ni_3S_2$                                                    | 1.0 M KOH                           | 98                       | 61                      | 24   |
| Heteronanorod/NF                                                     |                                     |                          |                         |      |
| CoP nanowire/carbon cloth                                            | 1.0 M KOH                           | 110                      | 129                     | 25   |
| Zn-Co-S/CFP                                                          | 1.0 M KOH                           | 234                      | 109                     | 26   |

**Table S2.** Comparative electrochemical HER performances of different electrocatalytic materials

 in alkaline medium.

| Catalysts                                      | Electrolyte | Overall voltage (V)      | Ref       |
|------------------------------------------------|-------------|--------------------------|-----------|
|                                                |             | @ 10 mA cm <sup>-2</sup> |           |
| CuCo <sub>2</sub> S <sub>4</sub>               | 1.0 M KOH   | 1.48                     | This work |
| NiCo <sub>2</sub> S <sub>4</sub> @NiFe LDH/ NF | 1.0 M KOH   | 1.6                      | 27        |
| EG/Co <sub>0.85</sub> Se/NiFe LDH              | 1.0 M KOH   | 1.67                     | 28        |
| Ni <sub>2</sub> P                              | 1.0 M KOH   | 1.63                     | 29        |
| CoFe LDH-F                                     | 1.0 M KOH   | 1.63                     | 30        |
| Ni <sub>2.5</sub> Co <sub>0.5</sub> Fe/NF      | 1.0 M KOH   | 1.62                     | 31        |
| NiCoFe LTH/CC                                  | 1.0 M KOH   | 1.55                     | 32        |
| NiS/NF                                         | 1.0 M KOH   | 1.64                     | 33        |
| Ni <sub>3</sub> Se <sub>2</sub>                | 1.0 M KOH   | 1.65                     | 34        |
| CoMnO@CN                                       | 1.0 M KOH   | 1.8                      | 35        |
| NiFe LDH/NiO/Ni-CNT                            | 1.0 M KOH   | 1.5                      | 36        |
| NiFeOx                                         | 1.0 M KOH   | 1.7                      | 37        |

**Table S3.** Comparative electrochemical overall water splitting performances of different

 electrocatalytic materials in alkaline medium.

### **Calculations:**

Exchange current density  $(i_{ex}) = RT/nFA\Theta$ 

Where, R is the universal gas constant (8.314J K<sup>-1</sup> mol<sup>-1</sup>), T reaction temperature (298 K), n is the number of electrons, F is Faraday constant (96485 C mol<sup>-1</sup>),  $\Theta$  is resistance (calculated from EIS), and A is area (1 cm<sup>-2</sup>).

| Catalysts                                          | OER                 | HER                 |  |
|----------------------------------------------------|---------------------|---------------------|--|
|                                                    | mA cm <sup>-2</sup> | mA cm <sup>-2</sup> |  |
| CuCo <sub>2</sub> S <sub>4</sub>                   | 18.3                | 13.7                |  |
| FeS <sub>2</sub> /CoFe <sub>2</sub> O <sub>4</sub> | 16.1                | 11.01               |  |
| CuS/CuFeS <sub>2</sub>                             | 13.7                | 6.7                 |  |

**Table S4** *I<sub>ex</sub>* values for different electrocatalytic materials.

#### References

- 1. M. Chauhan, K. P. Reddy, C. S. Gopinath and S. Deka, ACS Catal., 2017, 7, 5871-5879.
- 2. Q. Li and S. Sun, *Nano Energy*, 2016, **29**, 178-197.
- 3. D. Voiry, J. Yang and M. Chhowalla, Adv. Mater., 2016, 28, 6197-6206.
- 4. T. Wang, H. Xie, M. Chen, A. D'Aloia, J. Cho, G. Wu and Q. Li, *Nano Energy*, 2017, **42**, 69-89.
- 5. Q. Lu, Y. Yu, Q. Ma, B. Chen and H. Zhang, *Adv. Mater.*, 2016, **28**, 1917-1933.
- 6. Y. P. Zhu, C. Guo, Y. Zheng and S. Z. Qiao, Acc. Chem. Res., 2017, 50, 915-923.
- 7. A. Sivanantham, P. Ganesan and S. Shanmugam, *Adv. Funct. Mater.*, 2016, **26**, 4661-4672.

8. P. Cai, J. Huang, J. Chen and Z. Wen, Angew. Chem. Int. Ed., 2017, 56, 4858-4861.

9. J. Bai, T. Meng, D. Guo, S. Wang, B. Mao and M. Cao, *ACS Appl. Mater. Interfaces*, 2018, **10**, 1678-1689.

10. S. Deng, Y. Zhong, Y. Zeng, Y. Wang, X. Wang, X. Lu, X. Xia and J. Tu, *Adv. Sci.*, 2018, **5**, 1700772.

11. H. Wang, J. Tang, Y. Li, H. Chu, Y. Ge, R. Baines, P. Dong, P. M. Ajayan, J. Shen and M. Ye, *J. Mater. Chem. A*, 2018, **6**, 19417-19424.

12. H. Li, Z. Guo and X. Wang, J. Mater. Chem. A, 2017, 5, 21353-21361.

13. J. Wang, H. X. Zhong, Z. L. Wang, F. L. Meng and X. B. Zhang, ACS Nano, 2016, 10, 2342-2348.

L. L. Feng, G. Yu, Y. Wu, G. D. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, *J. Am. Chem. Soc.*,
 2015, **137**, 14023-14026.

15. M. Fan, L. Zhang, K. Li, J. Liu, Y. Zheng, L. Zhang, S. Song and Z.-A. Qiao, *ACS Appl. Nano Mater.*, 2019, **2**, 3889-3896.

16. F. O.-T. Agyapong-Fordjour, S. Oh, J. Lee, S. Chae, K. H. Choi, S. H. Choi, S. Boandoh, W. Yang, J. Huh, K. K. Kim and J.-Y. Choi, *ACS Appl. Energy Mater.*, 2019, **2**, 5785-5792.

17. L. Wen, J. Yu, C. Xing, D. Liu, X. Lyu, W. Cai and X. Li, *Nanoscale*, 2019, **11**, 4198-4203.

18. H. Du, L. Xia, S. Zhu, F. Qu and F. Qu, Chem. Commun., 2018, 54, 2894-2897.

19. M. Li, Y. Qian, J. Du, H. Wu, L. Zhang, G. Li, K. Li, W. Wang and D. J. Kang, ACS Sustainable Chem. Eng., 2019, **7**, 14016-14022.

20. H. Liu, X. Ma, Y. Rao, Y. Liu, J. Liu, L. Wang and M. Wu, *ACS Appl. Mater. Interfaces*, 2018, **10**, 10890-10897.

21. D. Liu, Q. Lu, Y. Luo, X. Sun and A. M. Asiri, Nanoscale, 2015, 7, 15122-15126.

22. X. Ma, W. Zhang, Y. Deng, C. Zhong, W. Hu and X. Han, Nanoscale, 2018, 10, 4816-4824.

23. Z. Liu, H. Tan, J. Xin, J. Duan, X. Su, P. Hao, J. Xie, J. Zhan, J. Zhang, J. J. Wang and H. Liu, *ACS Appl. Mater. Interfaces*, 2018, **10**, 3699-3706.

24. Y. Yang, K. Zhang, H. Lin, X. Li, H. C. Chan, L. Yang and Q. Gao, ACS Catal., 2017, 7, 2357-2366.

25. J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.

26. X. Wu, X. Han, X. Ma, W. Zhang, Y. Deng, C. Zhong and W. Hu, *ACS Appl. Mater. Interfaces*, 2017, **9**, 12574-12583.

27. J. Liu, J. Wang, B. Zhang, Y. Ruan, L. Lv, X. Ji, K. Xu, L. Miao and J. Jiang, ACS Appl. Mater. Interfaces, 2017, **9**, 15364-15372.

28. Y. Hou, M. R. Lohe, J. Zhang, S. Liu, X. Zhuang and X. Feng, *Energy Environ. Sci.*, 2016, **9**, 478-483.

29. L.-A. Stern, L. Feng, F. Song and X. Hu, *Energy Environ. Sci.*, 2015, **8**, 2347-2351.

30. P. F. Liu, S. Yang, B. Zhang and H. G. Yang, ACS Appl. Mater. Interfaces, 2016, 8, 34474-34481.

31. X. Zhu, C. Tang, H.-F. Wang, B.-Q. Li, Q. Zhang, C. Li, C. Yang and F. Wei, *J. Mater. Chem. A*, 2016, **4**, 7245-7250.

32. A.-L. Wang, H. Xu and G.-R. Li, ACS Energy Lett., 2016, 1, 445-453.

33. W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang and J. Wang, *Chem. Commun.*, 2016, **52**, 1486-1489.

34. J. Shi, J. Hu, Y. Luo, X. Sun and A. M. Asiri, *Catal. Sci. Technol.*, 2015, **5**, 4954-4958.

35. J. Li, Y. Wang, T. Zhou, H. Zhang, X. Sun, J. Tang, L. Zhang, A. M. Al-Enizi, Z. Yang and G. Zheng, *J. Am. Chem. Soc.*, 2015, **137**, 14305-14312.

36. M. Gong, W. Zhou, M. C. Tsai, J. Zhou, M. Guan, M. C. Lin, B. Zhang, Y. Hu, D. Y. Wang, J. Yang, S. J. Pennycook, B. J. Hwang and H. Dai, *Nat. Commun.*, 2014, **5**, 4695.

37. H. Wang, H. W. Lee, Y. Deng, Z. Lu, P. C. Hsu, Y. Liu, D. Lin and Y. Cui, *Nat. Commun.*, 2015, **6**, 7261.