Supporting Information

Flexible hierarchically PANI/MnO₂ porous network with fast channels and extraordinary chemical process for stable fast-charging lithiumsulfur battery

Yunjing Zhang,^{a,1} Xiaolin Liu,^{b, c,1} Liang Wu,^a Wenda Dong,^a Fanjie Xia,^{a,d} Liangdan Chen,^a Na

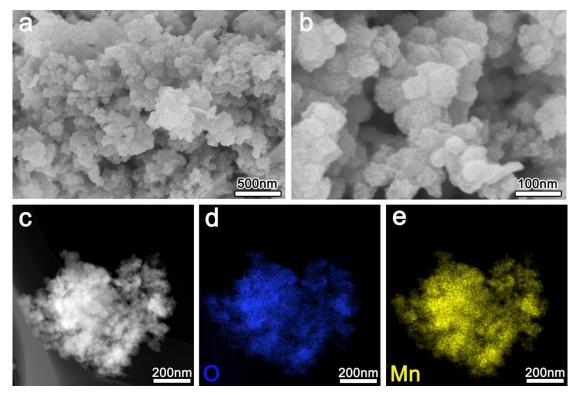
Zhou, a Lixue Xia, b,c Zhi-Yi Hu, a,d Jing Liu, a Hemdan S. H. Mohamed, a,e Yu Li, a,d* Yan Zhao, b,c*

Lihua Chen^a and Bao-Lian Su^{a,f*}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070, Wuhan, Hubei, China.

^b State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology,
122 Luoshi Road, 430070, Wuhan, China

 International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Wuhan, China


^d Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China.

^e Physics Department, Faculty of Science, Fayoum University, El Gomhoria Street, 63514 Fayoum, Egypt

^f Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium.

¹ These two authors contributed equally to this work.

*Corresponding authors: <u>yu.li@whut.edu.cn</u>, <u>yan2000@whut.edu.cn</u> and <u>bao-lian.su@unamur.be</u>

Figure S1. (a)-(b) SEM characterization of MnO₂; (c-e) corresponding EDX elemental mapping of the MnO₂, O: blue and Mn: yellow.

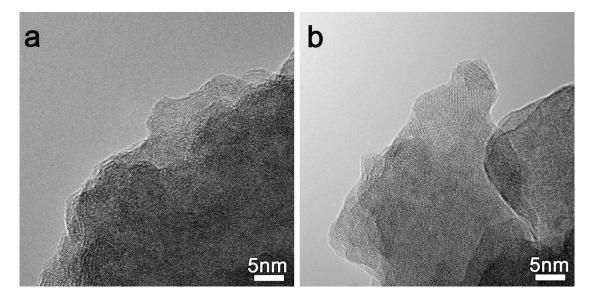


Figure S2. HR-TEM image of (a) PANI- MnO_2 and (b) MnO_2 .

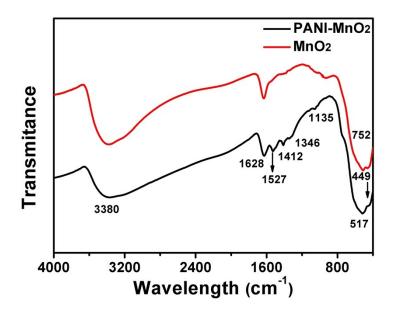


Figure S3. FTIR spectrums of PANI-MnO₂ and MnO₂.

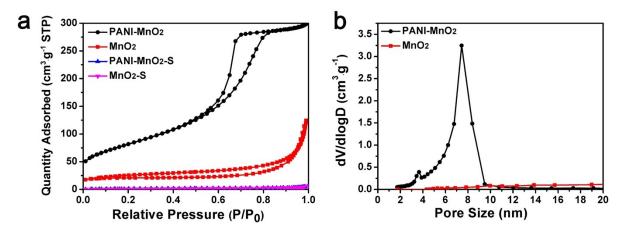


Figure S4. The nitrogen adsorption-desorption isotherms (a) and corresponding pore size (b) distributions of PANI-MnO₂ and MnO₂.

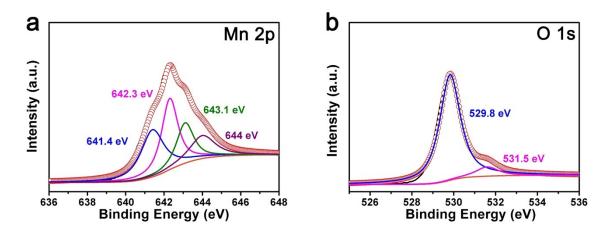
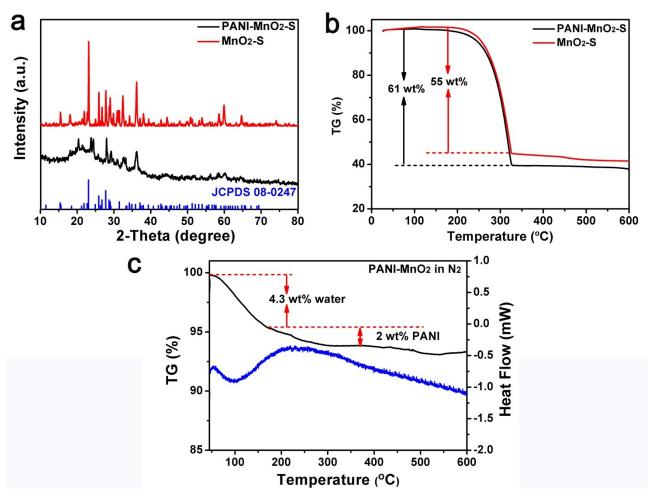



Figure S5. High-resolution Mn $2p^{3/2}$ (a) and O 1s (b) spectrums of MnO₂.

Figure S6. (a) XRD patterns of PANI-MnO₂-S and MnO₂-S; (b) TG curve of PANI-MnO₂-S and MnO₂-S in N₂; (c) TG and DSC curve of PANI-MnO₂ in N₂.

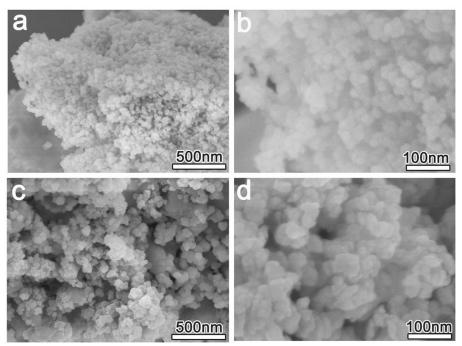
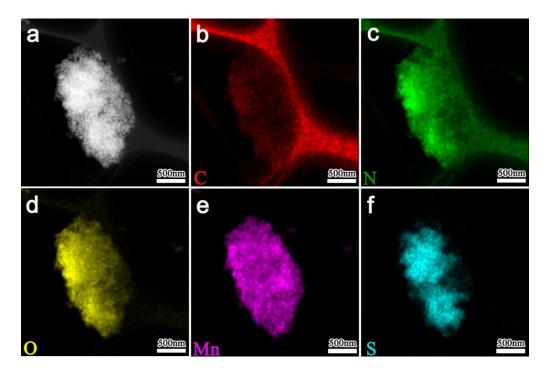
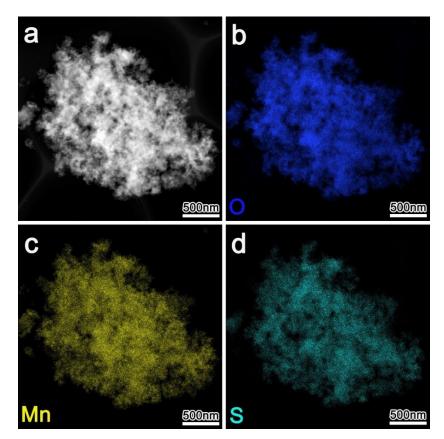
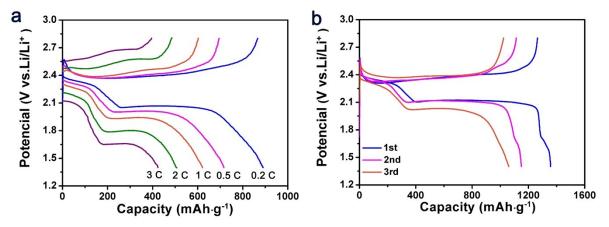
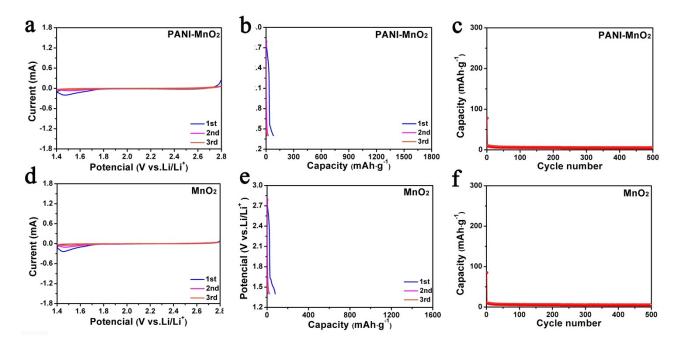
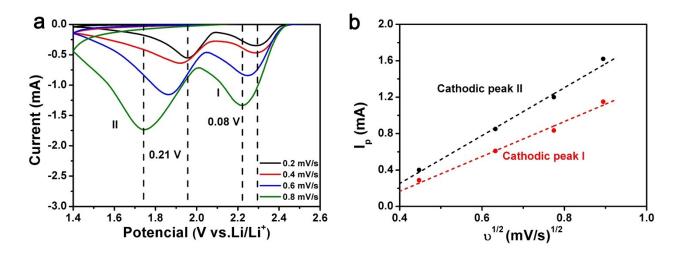
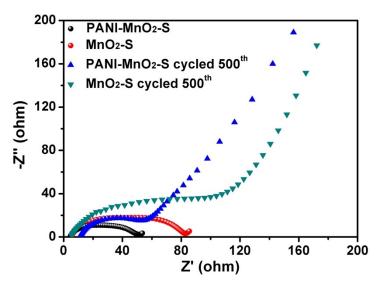




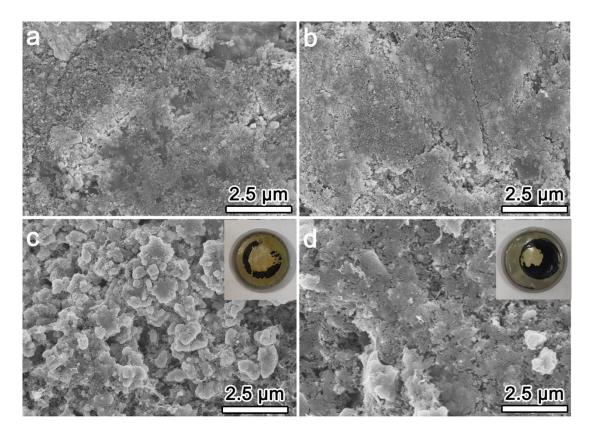
Figure S7. SEM characterization of PANI-MnO₂-S and MnO₂-S. (a)-(b) PANI-MnO₂-S; (c)-(d)


 MnO_2 -S.


Figure S8. A TEM image (a) and the corresponding elemental mappings (b-f) for C, N, O, Mn and S of PANI-MnO₂-S. C: red; N: green; O: yellow; Mn: purple and S: cyan.


Figure S9. A TEM image (a) and the corresponding elemental mappings (b-d) for O, Mn and S of MnO₂-S. O: blue; Mn: yellow and S: cyan.


Figure S10. (a) Charge-discharge profiles of MnO_2 -S electrode at various rate; (b) the first three cycles of charge-discharge profiles of MnO_2 -S electrode at 0.5 C.


Figure S11 CV curves of PANI-MnO₂ (a) and MnO₂ (d) electrode at 0.2 mV·s⁻¹; the first three cycles of charge/discharge profiles of PANI-MnO₂ (b) and MnO₂ (e) eletroode at 0.5 C; the cycle capacity of PANI-MnO₂ (c) and MnO₂ (f) eletroode at 0.5 C.

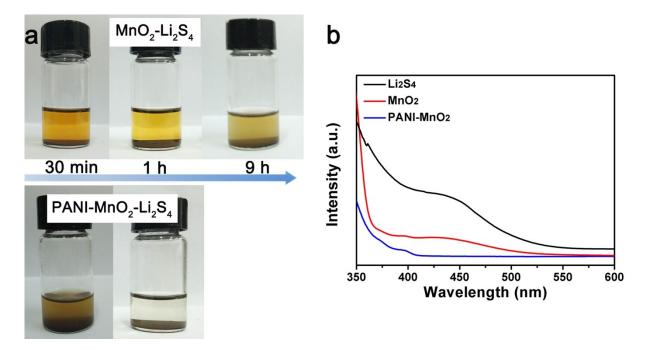

Figure S12. (a) CV curves of MnO₂-S electrode with increase of scan rate from 0.2 to 0.8 mV·s⁻¹; (b) the relationship between the peak current I_{peak} and the sweep rate $v^{0.5}$ at the two reduction peaks.

Figure S13. Electrochemical impedance spectra (EIS) of PANI-MnO₂-S and MnO₂-S cathodes before and after 500 cycles at 2 C.

Figure S14. The SEM characterization of fresh/cycled electrodes: MnO₂-S (a) and PANI-MnO₂-S (b) fresh electrodes; MnO₂-S (c) and PANI-MnO₂-S (d) electrodes after 500 cycles at 2 C, Inset: photograph of the corresponding separator.

Figure S15. (a) Optical pictures of adsorption tests with MnO_2 and $PANI-MnO_2$ in lithium polysulfides solution (Li₂S₄ dissolved in DOL/DME solvents, 10 mM); (b) UV-vis spectra (350-600 nm) of the 10 mM Li₂S₄ solution after exposure with blank, MnO_2 and $PANI-MnO_2$ composites.

	11	laterial.		
Host materials*	Rate	Cycles	Reversible	Ref.
			Capacity (mA h/g)	
MnO ₂ @HCF/S	0.5 C	100	850	21
PPy@MnO ₂	0.5 C	100	720	33
MnO ₂ nanosheets-S	0.2 C	200	1030	20
MnO ₂ @NHCSs-S	0.5 C	100	860	14
In-situ S@MnO ₂	0.5 C	100	912	22
MnO2@HCB/S	1 A/g	60	500	30
S@MnO ₂ @GO	0.35 C	50	350	10
S@MnO ₂ -C	0.1 C	50	500	61
S@PEDOT/MnO2	0.5 C	200	545	31
Mesopore PANI-MnO ₂	0.5 C	100	1161	This work
particles				

 Table S1 Comparison with previously reported manganese dioxide based carbonaceous host

material.

*HCF: hollow carbon nanofibers; NHCSs: N-doped hollow porous carbon nanospheres; HCB: hollow carbon nanoboxes.