Supporting Information

Ni₃S₂ Anchored into N/S co-doped Reduced Graphene Oxide with Highly Pleated Structure as a Sulfur Host for Lithium-Sulfur Batteries

Daying Guo,^{*a*} Zihe Zhang,^{*c*} Bin Xi,^{*a*,*} Zhisheng Yu,^{*b*} Zhen Zhou^{*c*,*} and Xi'an Chen^{*b*,*}

^a School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China 510275; ^b Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China 325035; ^c Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education); Institute of New Energy Material Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin, China 300350

* To whom correspondence should be addressed. E-mail: <u>xibin3@mail.sysu.edu.cn;</u> <u>zhouzhen@nankai.edu.cn;</u> <u>xianchen@wzu.edu.cn</u>

Materials Characterization

The weight percentages of Ni_3S_2 in the composites were measured using a TG/DTA thermo-gravimetric analyzer (Diamond PE) under an O₂ atmosphere at a heating rate of 10 °C min⁻¹ from room temperature to 950 °C, with a flow rate of 80 mL min⁻¹. The oxidation of Ni_3S_2 in O₂ goes through multiple steps:

Ni₃S₂ + O₂→2NiO+ NiS + SO₂ ↑ , 2NiS + 3O₂→ 2NiO + 2SO₂ ↑

 $2\text{NiO} + 2\text{SO}_2 + \text{O}_2 \rightarrow 2\text{NiSO}_4, \text{NiSO}_4 \rightarrow \text{NiO} + \text{SO}_3 \uparrow . \, {}^{\text{S1, S2}}$

Electrochemical measurements

Galvanostatic charge/discharge tests were conducted on fabricated CR2025-type coin battery, to evaluate the electrochemical capacity and cycle stability of the electrodes on the basis of the active sulfur at current densities of 0.2 C, 0.5 C, 1 C, 2 C, 3 C, 5 C (1 C = 1675 mA h g⁻¹) from 1.5 to 3.0 V using a LANHE instrument. Cyclic Voltammetry data were recorded on a CHI660e electrochemical workstation between 1.8 and 2.6 V to characterize the redox behavior and the kinetic reversibility of the cell. The AC impedance was measured with fresh cells at the open circuit potential. This was also carried out using a CHI 760e electrochemical workstation. The ac amplitude was 5 mV and the frequency ranged from 100 kHz to 0.01 Hz. In addition, the amount of electrolyte is maintained to ~15 μ L/ mg (sulfur) for the batteries cathode with the low sulfur areal density, ~12 μ L/ mg (sulfur) for the batteries cathode with the high sulfur areal density.

Elevate loading of sulfur. High sulfur loading on the cathode is helpful to obtain high energy density batteries. Therefore, the effects of different sulfur loading on the performance of batteries are studied (**Figure S22**). When the percentages of sulfur loaded are 61% and 81% (**Figure S22a**), the reversible discharge capacity are 1664.5 mAh g⁻¹ and 1346.8 mAh g⁻¹ at 0.2 C (**Figure S22b**), respectively, corresponding to active material utilization rate of 99.4% and 80.4%. It can be seen that as the sulfur loading increases, the specific discharge capacity decreases gradually. The capacity obtained at various rates are shown in **Table S9**. Interestingly, even 81% sulfur was loaded, corresponding discharge capacity still reaches 1346.8 mAh g⁻¹ at 0.2 C and 762.9 mAh g⁻¹ at 25-fold current density, i.e. 5 C (**Figure S22b**). As shown in **Figure S22c**, the discharge capacity of **3/S 81%** is 972.6 mAh g⁻¹ in the 1st cycle at 1 C and the decay rate is 0.11% per cycle after 500 cycles. Regarding to **3/S 61%**, the results that initial capacity of 1258.6 mA h g⁻¹ dropped to 778.3 mA h g⁻¹ over 500 charge-discharge cycle at 1 C and the decay rate of

0.076% per cycle, represent the fastest capacity retention and most stable performance.

Figure S1. SEM images of Ni₃S₂-800°C (a), composite **1** (b)

Figure S2. SEM images of composites 2 (a, b), 3 (c, d) and 4 (e, f)

Figure S3. TGA images of 2 (a), 3 (b) and 4 (c)

Figure S4. TEM image and EDS elemental mapping of composite 3.

Figure S5. TEM image and EDS elemental mapping of composite 4.

Figure S6. FTIR spectra of GO and $Ni_3S_2/(N, S)$ -RGO.

Figure S7. High resolution XPS of C 1s in GO.

Figure S8. High resolution XPS of (a) C 1s, (b) N 1s, (c) S 2p and (d) Ni 2p in composite **2**. (e) C 1s, (f) N 1s, (g) S 2p and (h) Ni 2p of composite **4**.

Figure S9. (a) Raman spectra of composites **1**, **2**, **3** and **4**; (b) the enlarged part of the green marked area in (a);

Figure S10. Raman spectra of GO

Figure S11. (a) N_2 adsorption/desorption isotherm (b) the curves for the corresponding pore size distribution of composites **1**, **2**, **3** and **4**.

Figure S12. (a) N_2 adsorption/desorption isotherm (b) the curves for the corresponding pore size distribution of composites **3**', and **3**''.

Figure S13. (a) TGA curves and (b) XRD patterns of S, composites 1, 2, 3 and 4.

Figure S14. SEM images of (a) 1/S 72%, (b) 2/S 72%, (c) 3/S 72% and (d) 4/S 72%.

Figure S15. N₂ adsorption/desorption isotherm of composites 3 and 3/S 72%.

Figure S16. Typical CV curve of the 3/S 72%/Li cell at a scan rate of 0.1 mV s⁻¹.

Figure S17. Discharge–charge curves recorded at different rates for composites (a) **1/S** 72%, (b) **2/S 72%**, (c) **3/S 72%** and (d) **4/S 72%**/Li cells.

Figure S18. The Nyquist plots of (a) before and (b) after 500 cycles of battery testing on composites **1/S 72%**, **2/S 72%**, **3/S 72%** and **4/S 72%/Li** cells.

Figure S19. Galvanostatic discharge–charge curves recorded at different cycles for composites (a) 1/S 72%, (b) 2/S 72%, (c) 3/S 72% and (d) 4/S 72%/Li cells.

Figure S20. Reversible capacity *vs.* current density (rate capability) of the cells with the as-prepared **3/S 72%**, **3'/S72%** and **3''/S 72%** cathodes.

Figure S21. XPS survey spectrum of sample Li_2S_6 -treated composite **3** (**3**- Li_2S_6); (e) XPS spectra of Ni 2p regions for the **3** and **3**- Li_2S_6 .

Figure S22. (a) TGA curves; (b) rate capability; (c) cycle performance at constant current rate of 1 C and corresponding Coulombic efficiency of the cells with **3/S 61%** and **3/S 81%** cathodes.

Figure S23. Galvanostatic discharge–charge curves recorded at different cycles for **3/S 72%**; (a) areal sulfur loading contents of 2.7 mg-sulfur cm⁻² at 1 C; (b) areal sulfur loading contents of 4.2 mg-sulfur cm⁻² at 3 C; (c) areal sulfur loading contents of 4.2 mg-sulfur cm⁻² at 5 C; (d) areal sulfur loading contents of 5.8 mg-sulfur cm⁻² at 1 C.

Composite	С	Ν	0	S	Ni
1	91.76%	3.33%	4.63%	0.27%	/
2	91.95%	3.99%	3.61%	0.28%	0.17%
3	89.45%	4.99%	2.80%	2.54%	0.22%
4	91.06%	3.63%	3.73%	1.06%	0.52%

Table S1. The atomic percentages of C, N, O, S and Ni evaluated by XPS.

Table S2. The atomic percentages of different nitrogen species in composites 2, 3 and 4.

Composite	pyridinic-N	pyrrolic-N	graphitic -N
1	1.10%	0.64%	1.59%
2	1.63%	0.87%	1.49%
3	2.12%	0.21%	2.66%
4	1.54%	0.54%	1.55%

Table S3. Raman spectra of composites 1-4 and GO.

Composite	I _D /I _G
1	1.24
2	1.17
3	1.15
4	1.11
GO	0.95

Composite	SSA (m²/g)	Pore Volume (cm ³ /g)
1	184	0.32
2	477	1.54
3	618	1.73
4	510	1.61

Table S4. Specific surface area and pore volume of composites **1**, **2**, **3** and **4** evaluated by the Brunauer-Emmett-Teller (BET) and the Barrett–Joyner–Halenda (BJH) method.

Table S5. Specific surface area and pore volume of composites **3'** and **3''** evaluated by the Brunauer-Emmett-Teller (BET) and the Barrett–Joyner–Halenda (BJH) method.

Composite	SSA (m²/g)	Pore Volume (cm ³ /g)
3′	599	1.59
3′′	610	1.66

Table S6. Specific surface area and pore volume of composites **3** and **3/S 72%** evaluated by the Brunauer-Emmett-Teller (BET) and the Barrett–Joyner–Halenda (BJH) method.

Composite	SSA (m²/g)	Pore Volume (cm ³ /g)
3	618	1.73
3/S 72%	12	0.11

Composite	0.2 C	0.5 C	1 C	2 C	3 C	5 C	0.2 C
1/S 72%	945.1	723.7	599.3	516.7	471.6	397.8	673.2
2/S 72%	1078.1	911.3	813.6	742.7	697.7	616.8	900.6
3/S 72%	1534.8	1336.4	1215.5	1074.5	981.1	826.2	1385.7
4/S 72%	1248.4	1004	897.8	799	739.7	672.2	1053.8

Table S7. The rate performance (mAh g⁻¹) of **1/S 72%, 2/S 72%, 3/S 72%** and **4/S 72%/L**i cells.

Table S8. A comparison of cycling performance between this work and some other Li-S cells with long cycle stability reported in literatures.

Cathode materials	Sloading	Cycling performance			Capacity	Refs.
	area density	C oveles		mAh o-1	decay rate per	
	(mg cm ⁻²)	C	• • • • • • •	8	cycle (%)	
TiN-S	1.0	0.5	500	988 - 644	0.19	S3
TiS ₂ -60S	1.0	1	1000	1021 - 613	0.04	S4
3Mo ₂ C/7S	1.0	0.2	300	1200 - 800	0.11	S5
C@SnO ₂ /S	1.0	2	1000	745 - 564	0.24	S6
C@TiO ₂ @C-S	1.0	2	500	774 - 511	0.068	S7
3/S 72%	1.5	3	1000	959- 732	0.023	This
						wok

Composite	0.2 C	0.5 C	1 C	2 C	3 C	5 C	0.2 C
3/S 72%	1534.8	1336.4	1215.5	1074.5	981.1	826.2	1385.7
3′/S 72%	1222.6	1017.3	934.5	864.8	794.9	642.7	1044.8
3″/S 72%	1345.4	1099.5	1027.2	934.3	860.6	732.5	1102.7

Table S9. The rate performance (mAh g⁻¹) of **3/S 72%**, **3'/S 72%** and **3''/S 72%/Li** cells.

Table S10. The rate performance (mAh g⁻¹) of 3/S 61% and 3/S 81%/Li cells.

Composite	0.2 C	0.5 C	1 C	2 C	3 C	5 C	0.2 C
3/S 61%	1664.5	1381.9	1254.6	1108.2	1013.7	863.9	1453.4
3/S 81%	1346.8	1050.7	978.1	880.6	822.2	762.9	1106.6

Table S11. The rate capability (mAh g⁻¹) of the cells with as-prepared **3/S** cathodes different areal sulfur loading contents of **A** 2.7, **B** 4.2 and **C** 5.8 mg-sulfur cm⁻²

Composite	0.05 C	0.2 C	0.5 C	1 C	2 C	3 C	5 C	0.05 C
Α	1333.9	1123.6	1000.9	925.6	840.3	756.3	648.4	1027.8
В	1233.1	1054.6	929.1	790.6	701.3	493.2	380.6	916.1
С	1158.2	1009.7	784.3	574.8	439.8	307.8	149.9	807.2

Cathode materials	Sloading	Cycling performance			Capacity	Refs.
	area density	C	cvcles	mAh g-1	decay rate per	
	(mg cm ⁻²)	C	- ,	8	cycle (%)	
G–VS ₂ /S	5.0	0.2	50	1015 - 800	0.42	S8
MC-NS/S	4.5	1	200	586 - 382	0.17	S9
G-NDHCS-S	3.9	0.5	200	839 - 520	0.19	S10
N,S-codoped graphene	4.6	0.5	200	925 - 670	0.16	S11
S@Co-NCNT/NP	3.2	0.5	200	908 - 657	0.15	S12
3/S 72%	5.8	1	200	572- 414	0.14	This
						wok

Table S12. A comparison of cycling performance between this work and some other Li-S cells with loading high sulfur area density reported in literatures.

References

- S1. S. L. Yang, H. B. Yao, M. R. Gao, S. H. Yu, Cryst. Eng. Comm., 2009, 11, 1383-1390.
- S2. D. Y. Go, J. Park, P. J. Noh, G. B. Cho, H. S. Ryu, T. H. Nam, H. J. Ahn, K. W. Kim, Mater. Res. Bull., 2014, 58, 190-194.
- S3. Z. Cui, C. Zu, W. Zhou, A. Manthiram, J. B. Goodenough, *Adv. Mater.*, 2016 **28**, 6926-6931.
- S4. X. C. Liu, Y. Yang, J. J. Wu, M. Liu, S. P. Zhou, B. D. A. Levin, X. D. Zhou, H. J. Cong, D. A. Muller, P. M. Ajayan, H. D. Abruña, F. S. Ke, ACS Energy Lett., 2018, 3, 1325-1330.
- S5. X. Q. Zeng, X. H. Gao, G. R Li, M. H. Sun, Z. Lin, M. Ling, J. C. Zheng C. D. Liang, J. Mater. Chem. A, 2018, 6, 17142-17147.
- S6. M. X. Wang, L. S. Fan, X. Wu, D. Tian, J. H. Cheng, Y. Qiu, H. X. Wu, B. Guan, N. Q. Zhang, K. N. Sun, Y. Wang, J. Mater. Chem. A, 2018, 5, 19613–19618.
- S7. M. M. Fang, Z. M. Chen, Y. Liu, J. P. Quan, C. Yang, L. C. Zhu, Q. B. Xu, Q. Xu, J. Mater. Chem. A, 2018, 6, 1630-1638.
- S8. X. Y. Zhu, W. Zhao, Y. Z. Song, Q. C. Li, F. Ding, J. Y. Sun, L. Zhang, Z. F. Liu, Adv. Energy Mater., 2018, 8, 1800201-1800210.

- S9. J. B. Li, C. Y. Chen, Y. W. Chen, Z. H. Li, W. F. Xie, X. Zhang, M. F. Shao, M. Wei, *Adv. Energy Mater.*, 2019, 1901935-1901945.
- S10. G. M. Zhou, Y. B. Zhao, A. Manthiram, Adv. Energy Mater., 2015, 5, 1402263-1402273.
- S11. G. M. Zhou, E. Paek, G. S. Hwang, A. Manthiram, Nat. Commun., 2015, 6, 7760-7771.
- S12. T. Chen, B. R. Cheng, G. Y. Zhu, R. P. Chen, Y. Hu, L. B. Ma, H. L. Lv, Y. R. Wang, J. Liang, Z. X. Tie, Z. Jin, J. Liu, *Nano Lett.*, 2017, **17**, 437-444.