Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Porous nanofiber composite membrane with 3D interpenetrating

highways towards ultrafast and isotropic proton conduction

Yafang Zhang^{a,1}, Xiang Zhang^{a,1}, Ping Li^a, Wenjia Wu^{a,b,*}, Jianlong Lin^a, Jingtao Wang^{a,c,*}, Lingbo Qu^b, Haoqin Zhang^a

^aSchool of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

^bCollege of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China

^cHenan Institute of Advanced Technology, Zhengzhou University, 97 Wenhua Road Zhengzhou

450003, P.R. China

*To whom correspondence should be addressed: E-mail: wenjiawu@zzu.edu.cn (W.J. Wu);

jingtaowang@zzu.edu.cn (J.T. Wang).

¹These authors contributed equally to this work.

Fig. S1. Chemical structure of ILs: (a) Long alkyl chain $[C_8mim][Tf_2N]$ and (b) short alkyl chain $[C_2mim][Tf_2N]$.

Fig. S2. (a) FTIR spectra of $PVA/PEI/C_2$ -30 (not crosslinked), PVA/PEI (crosslinked), $PVA/PEI/C_2$ -30 (with), and $PVA/PEI/C_2$ -30. (b) FTIR spectra of $PVA/PEI/C_8$ -30 (not crosslinked), PVA/PEI (crosslinked), $PVA/PEI/C_8$ -30 (with), and $PVA/PEI/C_8$ -30.

Fig. S3. SEM images of (a) $PVA/PEI/C_2-10$ (with), (b) $PVA/PEI/C_2-10$, (c) $PVA/PEI/C_8-10$ (with), and (d) $PVA/PEI/C_8-10$.

Fig. S4. (a and b) SEM images of $PVA/PEI/C_8$ -30. (c) Cross-sectional TEM image of $PVA/PEI/C_8$ -30. (d) Optical photograph and microscope image of $PVA/PEI/C_8$ -30 electrospinning solution.

Fig. S5. Nitrogen adsorption/desorption isotherms of (a) PVA/PEI and PVA/PEI/C₂-Y and (b) PVA/PEI/C₈-Y.

Fig. S6. SEM image of SP@PVA/PEI/C₂-30.

Fig. S7. FTIR spectra of SP, SP@PVA/PEI, and SP@PVA/PEI/C₈-Y.

Fig. S8. DSC curves of SP, SP@PVA/PEI, and SP@PVA/PEI/C $_8$ -Y.

Fig. S9. *IEC* values of (a) SP@PVA/PEI and SP@PVA/PEI/C₂-Y and (b) SP@PVA/PEI/C₈-Y.

Fig. S10. Mechanical properties of (a) SP, SP@PVA/PEI, SP@PVA/PEI/C₂-Y and (b) SP@PVA/PEI/C₈-Y (note: error bars represent standard deviations for three measurements).

Fig. S11. (a) Water uptake and (b) area swelling of SP.

Fig. S12. (a) Water uptake and (b) area swelling of SP@PVA/PEI and SP@PVA/PEI/C₂-Y.

Fig. S13. (a) Water uptake and (b) area swelling of SP@PVA/PEI and SP@PVA/PEI/C₈-Y.

Fig. S14. Arrhenius-plots of through-plane conductivity (σ_{\perp}) for SP@PVA/PEI and SP@PVA/PEI/C₂-*Y* under 100% RH.

Fig. S15. (a) Temperature-dependent through-plane conductivity (σ_{\perp}) of SP@PVA/PEI and SP@PVA/PEI/C₂-*Y* under 0% RH. (b) Arrhenius-plots of through-plane conductivity (σ_{\perp}) under 0% RH.

Fig. S16. DSC heating traces of SP, SP@PVA/PEI, and SP@PVA/PEI/C₂-Y (note: inset is the magnification of DSC traces).

Fig. S17. Temperature-dependent in-plane conductivity $(\sigma_{//})$ of SP@PVA/PEI and SP@PVA/PEI/C₂-*Y* under 100% RH.

Fig. S18. (a) Temperature-dependent through-plane conductivity (σ_{\perp}) of SP@PVA/PEI and SP@PVA/PEI/C₈-*Y* under 100% RH. (b) Arrhenius-plots of through-plane conductivity (σ_{\perp}) under 100% RH. (c) RH-dependent through-plane conductivity (σ_{\perp}) of SP@PVA/PEI and SP@PVA/PEI/C₈-*Y* at 80 °C.

Fig. S19. (a) Temperature-dependent through-plane conductivity (σ_{\perp}) of SP@PVA/PEI and SP@PVA/PEI/C₈-*Y* under 100% RH. (b) Transfer anisotropy coefficient ($\sigma_{//}/\sigma_{\perp}$) at 80 °C and 100% RH.

Fig. S20. Temperature-dependent through-plane conductivity (σ_{\perp}) and in-plane conductivity $(\sigma_{\prime\prime})$ of SP under 100% RH (inset is the transfer anisotropy coefficient $(\sigma_{\prime\prime}/\sigma_{\perp})$ of SP at 80 °C and 100 % RH).

Fig. S21. (a) Hydrogen permeability and (b) oxygen permeability of SP, SP@PVA/PEI, SP@PVA/PEI/C₂-30, and SP@PVA/PEI/C₈-30 at different temperatures.

Table S1. Thickness of the membranes.

Membrane	SP@PVA/	SP@PVA/	SP@PVA/	SP@PVA/	SP@PVA/	SP@PVA/	SP@PVA/
	PEI	PEI/C2-10	PEI/C2-20	PEI/C2-30	PEI/C ₈ -10	PEI/C ₈ -20	PEI/C ₈ -30
Thickness (µm)	90±2	83±3	89±4	86±3	85±3	87±4	88±4

rube 52. Fore structure parameters of hanomoti mais.							
Sample	Surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)	Average pore diameter (nm)				
PVA/PEI	7.35	0.031	-				
PVA/PEI/C2-10	22.47	0.093	17.13				
PVA/PEI/C2-20	45.76	0.209	20.94				
PVA/PEI/C2-30	78.83	0.287	34.75				
PVA/PEI/C8-10	17.16	0.152	19.27				
PVA/PEI/C8-20	39.07	0.275	24.16				
PVA/PEI/C ₈ -30	61.16	0.307	44.95				

 Table S2. Pore-structure parameters of nanofiber mats.

Sample	Water uptake ^ω t (wt. %)	Free water ^ω f (wt. %)	Bound water ^ω _b (wt. %)	ω_b/ω_t	
SP/PVA/PEI	25.7	17.0	8.7	33.8	
SP/PVA/PEI/C2-10	30.8	13.4	17.4	56.6	
SP/PVA/PEI/C2-20	33.9	5.8	28.1	82.9	
SP/PVA/PEI/C2-30	35.9	2.6	33.3	92.9	

 Table S3. Water state in nanofiber composite membranes.

Sample	In-plane σ# (mS cm ⁻¹)	Through-plane σ⊥ (mS cm ⁻¹)	σ <i>#</i> /σ1	conditions	Ref.
Hybrid membranes					
Nafion / 3D sGO membranes	330	290	1.14	80 °C ,98%RH	[1]
Nafion / HNTs-SO3H membranes	-	73	-	80°C ,90%RH	[2]
Nation / GO-Nation membranes	-	82	-	95 °C ,100%RH	[3]
Pore materials membranes					
ABPBI / IL@SNR	-	65	-	80 °C ,98%RH	[4]
Asymmetric PBI / PPA	-	65.7	-	100 °C ,0%RH	[5]
CSPS / SPES	130	110	1.19		[6]
Nanofiber compote membranes					
SPPESK	80	7	11.1	30 °C, 100% RH	[7]
	165	37	4.55	80 °C, 100% RH	
SPEEK / Aquivion® membranes	~300	~200	1.50	80 °C, 100% RH	[8]
	~45	~30	1.50	80 °C, 40% RH	
6FDA-BDSA-r-APPF membrane	212	81	2.63	90 °C, 98% RH	[9]
Nafion / SPEEK/SiO2 membrane	-	77	-	90 °C, 100% RH	[10]
CS / SPEEK membrane	-	60	-	120 °C, 0% RH	[11]
F-SPFEK membrane	-	61	-	80 °C, 100% RH	[12]
Nafion / PVDFNF membrane	-	91	-	90 °C, 95% RH	[13]
Nafion / PSSA-g-PVDFNF membrane	-	106	-	95 °C, 95% RH	[14]
Nafion / S-ZrO2 fiber hybrid membrane	310	-	-	80 °C, 100% RH	[15]
ingle high-purity Nafion fiber membrane	1500	-	-	30 °C, 90% RH	[16]
SPES / Nafion membrane	-	88	-	25 °C, 95% RH	[17]
Nafion / SPEEK membrane	90	-	-	20 °C, 100% RH	[18]
CS / Nafion/PAN-C2-25 membrane	270	150	1.81	120 °C, 0% RH	[19]
	-	~230	-	80 °C ,100% RH	
SP@PVA/PEI/C8-30 membrane	592	397	1.49	80 °C,100% RH	This work
SP@PVA/PEI/C2-30 membrane	609	561	1.08	80 °C,100% RH	This work

 Table S4. Proton conduction behaviors of NFCMs in literatures.

Supplementary References

- L Cao, H. Wu, P. Yang, X. He, J. Li, Y. Li, M. Xu, M. Qiu and Z. Jiang, *Adv. Funct. Mater.*, 2018, 28, 1804944.
- I. Ressam, A. EI. Kadib, M. Lahcini, G. A. Luinstra and H. Perrot, *Int. J. Hydrogen Energy*, 2018, 43, 18578–18591.
- 3. K. J. Peng, J. Y. Lai and Y. L. Liu, J. Membr. Sci., 2016, 514, 86-94.
- X. Zhang, X. Fu, S. Yang, Y. Zhang, R. Zhang, S. Hu, X. Bao, F. Zhao, X. Li and Q. Liu, J. Mater. Chem. A, 2019, 7, 15288–15301.
- L.C. Jheng, S. L. C. Hsu, T. Y. Tsai and W. J. Y. Chang, J. Mater. Chem. A, 2014, 2, 4225–4233.
- C. Zhang, X. Yue, Y. Mu, X. Zuo, N. Lu, Y. Luo, R. Na, S. Zhang and G. Wang, *Electrochim.* Acta, 2019, 307, 188–196.
- M. Tanaka, Y. Takeda, T. Wakiya, Y. Wakamoto, K. Harigaya, T. Ito, T. Tarao and H. Kawakami, J. Power Sources, 2017, 342, 125–134.
- C. Boaretti, L. Pasquini, R. Sood, S. Giancola, A. Donnadio and M. Roso, J. Membr. Sci., 2018, 545, 66–74.
- D. M. Yu, S. Yoon, T. H. Kim, J. Y. Lee, J. Lee and Y. T. Hong, J. Membr. Sci., 2013, 446, 212–219.
- C. Lee, S. M. Jo, J. Choi, K. Y. Baek, Y. B. Truong, I. L. Kyratzis and Y.G. Shul, *J. Mater. Sci.*, 2013, 48, 3665–3671.
- J. Wang, Y. He, L. Zhao, Y. Li, S. Cao, B. Zhang and H. Zhang, J. Membr. Sci., 2015, 482, 1–12.
- 12. W. Liu, S. Wang, M. Xiao, D. Han and Y. Meng, Chem. Commun., 2012, 48, 3415-3417.
- 13. H. Y. Li and Y L. Liu, J. Mater. Chem. A, 2014, 2, 3783-3793.
- 14. H. Y. Li, Y. Y. Lee, J. Y. Lai, and Y L. Liu, J. Membr. Sci., 2014, 466, 238-245.
- Y. Yao, Z. Lin, Y. Li, M. Alcoutlabi, H. Hamouda and X. Zhang, *Adv. Energy Mater.*, 2011, 1, 1133–1140.
- B. Dong, L. Gwee, D. Salas-De La Cruz, K.I. Winey and Y. A. Elabd, *Nano Lett.*, 2010, 10, 3785–3790.

- I. Shabani, M. M. Hasani-Sadrabadi, V. Haddadi-Asl and M. Soleimani, J. Membr. Sci., 2011, 368, 233–240.
- 18. X. Xu, L. Li, H. Wang, X. Li and X. Zhuang, RSC Adv., 2015, 5, 4934–4940.
- 19. J. Wang, P. Li, Y. Zhang, Y. Liu, W. Wu and J. Liu, J. Membr. Sci., 2019, 585, 157-165.