Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Structure-Designed Synthesis of 3D MoS₂ Anchored into Ionic Liquid Modified rGO-CNTs Inspired by Honeycomb for Excellent Lithium Storage

Jun Xia,^a Ruixing Li,^a Tianshuai Wang,^a Puheng Yang,^b Heliang Zhou,^a Jiajie Li, ^b Gangyi Xiong,^a Yalan Xing ^{*,a} and Shichao Zhang ^{*,a}

a. School of Materials Science and Engineering, Beihang University, Beijing 100191, P.R. China.

b. School of Physics Science and Nuclear Energy Engineering, Beihang University, Beijing 100191, P.R. China.

*E-mail: csc@buaa.edu.cn; xingyalan@buaa.edu.cn.

Figure S1. a) FE-SEM images of CNTs before treatment and b) surface functionalized CNTs, c) GO sheets, d) MoS₂ grown in solution without GO–CNTs–IL substrate, e) GO–CNTs–IL aerogel. f) TEM images of surface functionalized CNTs.

Firstly, we fabricated surface functionalized CNTs with extremely hydrophilic property from multiwalled CNTs. Subsequently, hydrophilic CNTs were dispersed to the aqueous colloidal suspension of GO sheets to obtain GO–CNTs–IL aerogel.

Figure S2. a) FE-SEM, b) TEM images of MoS₂@rGO–CNTs–IL. c-f) HAADF-STEM image of MoS₂@rGO–CNTs–IL and EDS mappings of C (red), Mo (blue) and S (yellow) in low magnification.

Figure S3. a, b) The crystal structures of MoS₂ with (001) and (110) crystal planes. ce) XPS spectra of C 1s, Mo 3d, and S 2p, respectively.

Figure S4. a-c) N_2 adsorption/desorption isotherms of $MoS_2@rGO-CNTs-IL$, rGO-CNTs-IL and pure MoS_2 (The insets show BJH pore size distribution plots curves). d, e) Representative AFM image of individual GO nanosheets and AFM image corresponding linear scan analysis of the GO nanosheets.

Figure S5. Thermogravimetric analysis (TGA) of MoS₂@rGO–CNTs–IL, rGO–CNTs–IL and pure MoS₂ sample (The inset shows the enlarged image).

Table S1. Nyquist plots with MoS₂@rGO–CNTs–IL electrodes before 1st, after 200th and 500th cycles.

Electrode	R _s	R _{SEI}	R _{ct}	Cycles
MoS2@rGO-CNTs-IL	2.4	8.3	119.7	Before 1 st
	4.2	7.9	20.4	After 200 th
	5.5	6.1	51.8	After 500 th

Figure S6. a) CV curves of rGO–CNTs–IL at a scanning rate of 0.1 mV s⁻¹. b) Chargedischarge curves of rGO–CNTs–IL for the first five cycles at a current density of 100 mA g⁻¹. c) Rate performance of rGO–CNTs–IL and MoS₂ electrodes with various current densities from 0.1 to 2 A g⁻¹.

Figure S7. The particle size distribution of MoS₂@rGO-CNTs-IL.

Figure S8. Cycling capacitance of MoS₂@rGO–CNTs–IL, MoS₂@rGO–CNTs, MoS₂@ CNTs–IL, MoS₂@rGO–IL, MoS₂@CNTs, MoS₂@rGO, rGO–CNTs–IL and MoS₂ electrodes at a current density of 200 mA g⁻¹.

In order to better explain the function of each carbon component of MoS₂@rGO-CNTs-IL, we constructed MoS₂-based electrodes with different carbon component separately. Eight samples were prepared and marked as pure MoS₂, rGO-

CNTs-IL, $MoS_2@rGO$, $MoS_2@CNTs$, $MoS_2@rGO$ -IL, $MoS_2@CNTs$ -IL, $MoS_2@rGO$ -CNTs and $MoS_2@rGO$ -CNTs-IL. The cycling performance of all eight electrodes at a current density of 200 mA g⁻¹ are presented in Figure S8, $MoS_2@rGO$ -CNTs-IL electrode shows the best performance. It can be found that the cell with MoS_2 electrode shows a low capacity of 635 mAh g⁻¹ in the first cycle and only remains 178 mAh g⁻¹ after 200 cycles (in Figure S8), due to the low conductivity and serious volume effects simultaneously. The electrochemical property of MoS_2 increases first and then decays quickly. For rGO-CNTs-IL electrode, it shows the lowest initial capacity among the eight cells and then the capacity decays gradually.

Figure S9. FE-SEM images of a) MoS₂@rGO, b) MoS₂@CNTs, c) MoS₂@rGO-IL, d) MoS₂@CNTs-IL and e) MoS₂@rGO-CNTs.

As shown in Figure S8, the MoS₂@rGO electrode exhibits a high capacity of 1120 mAh g⁻¹ because of the assistance of rGO. However, we can find that both graphene and MoS₂ are severely agglomerated in Figure S9a. Therefore, the capacity of MoS₂@rGO decays significantly after several cycles and only remains 474 mAh g⁻¹ after 200 cycles. The electrochemical property of MoS₂@CNTs are displayed in Figure S8. The cyclic property also decays significantly with cycles. The initial discharge capacity of MoS₂@CNTs is almost 1180 mAh g⁻¹. Similarly, we can observe that both CNTs and MoS₂ are severely agglomerated in Figure S9b. Hence, the capacity of MoS₂@CNTs decays significantly after 40 cycles and remains 550 mAh g⁻¹ after 200

cycles. The improvement of $MoS_2@rGO$ and $MoS_2@CNTs$ indicates the existence of rGO and CNTs could enhance the electrical conductivity of pure MoS_2 and lead to higher initial capacity. But the unsatisfactory cyclic performance and their SEM images imply the dispersion of MoS_2 is not even and volume expansion induced pulverization is not addressed by such structure.

When IL is introduced, the MoS₂@rGO–IL and MoS₂@CNTs-IL electrode show improved long-term cyclic performance (Figure S9c and Figure S9d). For MoS₂@rGO–IL, its reversible capacity gradually declined from an initial capacity of 1104 to 940 mAh g⁻¹ after 20 cycles, giving rise to a 85% capacity retention. After 20 cycles, it maintains ~900 mAh g⁻¹ until the end of 200 cycles. MoS₂@CNTs-IL exhibits similar feature and delivers a capacity of ~940 mAh g⁻¹ from the 20th cycle to the 200th cycle. The improvement indicates IL is very helpful in constructing the hybrid electrode. Figure S9c and Figure S9d display the SEM images of MoS₂@rGO–IL and MoS₂@CNTs-IL, rGO/CNTs and MoS₂ are more evenly distributed with the assistance of IL. This proves ionic liquid could facilitate the incorporation and dispersion of MoS₂ on rGO/CNTs matrix. Moreover, IL can improve the stability of the electrode and increase the binding force of graphene and MoS₂. In addition, the small amount of ionic liquid would be carbonized after calcination and turn into carbon coating to improve the electrochemical performance of MoS₂.

In Figure S8, we can also find that the $MoS_2@rGO-CNTs$ electrode decays in the initial 50 cycles, and then it keeps stable in the following cycles. The $MoS_2@rGO-CNTs$ delivers a reversible specific capacity about 1248 mAh g⁻¹ in the first several cycles and remains almost ~1000 mAh g⁻¹ after 200 cycles. SEM images shown in Figure S9e indicate MoS_2 is unevenly distributed on rGO-CNT matrix without the assistance of IL. It should be noted that graphene and functional CNTs have been considered as highly conductive matrix. rGO-CNT matrix possesses multimodal porous structure, including the micro-mesopores, meso- and macropores. It has been widely recognized that the creation of the interpenetrating and hierarchical pores are effective ways to guarantee the sufficient contact area and plenty of electrochemical active sites between electrolyte and electrode materials.

Figure S10. Photographs of the mechanical robustness (a-c) and flexible tests (d-f) for MoS2@rGO-CNTs-IL aerogel. g) Photo of the LED beads lighted by the MoS2@rGO-CNTs-IL cells.

Figure S11. XRD of $MoS_2@rGO-CNTs-IL$ after 1000 cycles at 5 A g⁻¹.

Electrode	1 st Specific capacity (m Ah g ⁻¹)	1 st Coulombic efficiency (%)	Capacity decay rate (%) [at (x) A g ⁻¹ after (y) cycles]	Rate performance
3D highly porous SHS MoS ₂ @rGO–CNTs–IL (this work)	1456 at 200 mA g ⁻¹	83.3	0.0075 (5,1000)	1206, 1143, 1079, 1005 and 712 mAhg ⁻¹ at 0.2, 0.5, 1, 2 and 5 A g ⁻¹
MoS ₂ -Graphene-Carbon Nanotube ^[1]	929 at 1000 mA g ⁻¹	74	0.046 (1, 100)	949, 883, 858, 737 and 652 mAhg ⁻¹ at 0.1, 0.5, 1, 5 and 10 A g ⁻¹
CNT@MoS ₂ @C ^[2]	1238 at 100 mA g ⁻¹	76.3	0.006 (1, 500)	949, 883, 858, 737 and 652 mAhg ⁻¹ at 0.1, 0.5, 1, 5 and 10 A g ⁻¹
MoS ₂ -G ^[3]	1160 at 100 mA g ⁻¹	77.2	0.036 (1, 500)	1035, 1012, 986 and 890 mAhg ⁻¹ at 0.2, 0.3, 0.5 and 1 A g ⁻¹
Honeycomb-like MoS ₂ nanoarchitectures on 3DGF ^[4]	1397 at 200 mA g ⁻¹	82.9	0.2 (0.2, 60)	1172, 1095, 1007, 966 and 800 mAhg ⁻¹ at 0.2, 0.5, 1, 2 and 5 A g ⁻¹
MoS ₂ /GA–GF free- standing hybrid ^[5]	1404 at 200 mA g ⁻¹	81.7	0.065 (1, 500)	993, 894, 789, 689 and 593 mAhg ⁻¹ at 0.2, 0.5, 1, 2 and 5 A g ⁻¹
MoS ₂ 3D assembled tubes [6]	1172 at 100 mA g ⁻¹	68.3	0.57 (0.1, 50)	900, 825, 600 and 500 mAhg ⁻¹ at 0.1, 0.5, 1 and 5 A g ⁻¹
hierarchical hollow MoS ₂ nanoparticles ^[7]	1236 at 100 mA g ⁻¹	74	0.34 (0.1, 80)	1030, 910, 850 and 780 mAhg ⁻¹ at 0.1, 0.3, 0.5

Table S2. Comparison of the reported MoS₂-based electrode materials for lithium ion storage.

				and 1 A g ⁻¹
GF@CNT@MoS2 ^[8]	1364 at 100 mA g ⁻¹	68.3	0.17 (0.2, 200)	925, 541, 408, 316 and 229 mAhg ⁻¹ at 0.1, 0.5, 1, 2 and 5 A g ⁻¹
CNFs@MoS ₂ ^[9]	1489 at 100 mA g ⁻¹	66	0.05 (1, 300)	1000, 1100, 900 and 864 mAhg ⁻¹ 0.1, 0.5, 1, 2 and 5 A g ⁻¹
MoS ₂ /G ^[10]	1346 at 100 mA g ⁻¹	69.1	0.02 (0.1, 50)	1040, 1000, 820 and 702 mAhg ⁻¹ at 0.1, 0.2, 0.5 and 1 A g ⁻¹
MoS ₂ -PPY-rGO ^[11]	1428 at 200 mA g ⁻¹	75.9	0.007 (0.2, 400)	1100, 910, 800 and 600 mAhg ⁻¹ 0.2, 0.5, 1 and 2 A g ⁻¹
MoS ₂ -SWNT ^[12]	1117 at 200 mA g ⁻¹	64.4	0.11 (0.1, 100)	915, 850, 720, 630 and 586 mAhg ⁻¹ 0.1, 0.4, 1.2, 2.4 and 3.2 A g ⁻¹
MW-MoS ₂ ^[13]	1199 at 500 mA g ⁻¹	75	0.037 (5, 490)	1355, 1100, 980, 720 and 438 mAhg ⁻¹ 0.5, 1, 2, 5 and 10 A g ⁻¹
MoS ₂ -0.5nm-TiO ₂ ^[14]	1393 at 100 mA g ⁻¹	69	0.4 (0.5, 200)	850, 600, 500 and 392 mAhg ⁻¹ 0.05, 0.2, 0.4 and 0.8 A g ⁻¹
NTL-MoS ₂ /G hybrid ^[15]	1665 at 100 mA g ⁻¹	67.7	0.19 (0.1, 200)	1100, 1050, 950 and 650 mAhg ⁻¹ 0.1, 0.2, 0.5 and 1 A g ⁻¹
GR/CNT-MoS ₂ (3) hybrid ^[16]	1522 at 100 mA g ⁻¹	82.1	0.04 (1, 600)	1150, 1000, 950 and 900 mAhg ⁻¹ 0.1, 0.2, 0.5 and 1 A g ⁻¹

References:

[1] Zhu, C.; Mu, X.; Aken, P. A.; Maier, J.; Yu, Y., Fast Li Storage in MoS₂-Graphene-Carbon Nanotube Nanocomposites: Advantageous Functional Integration of 0D, 1D, and 2D Nanostructures. *Adv. Energy Mater.* **2015**, 5, 1401170.

[2] Zhang, Z.; Zhao, H.; Teng, Y.; Chang, X.; Xia, Q.; Li, Z.; Fang, J.; Du, Z.; Świerczek, K. Carbon-Sheathed MoS₂ Nanothorns Epitaxially Grown on CNTs: Electrochemical Application for Highly Stable and Ultrafast Lithium Storage. *Adv. Energy Mater.* **2018**, 8, 1700174.

[3] Teng, Y.; Zhao, H.; Zhang, Z.; Li, Z.; Xia, Q.; Zhang, Y.; Zhao, L.; Du, X.; Du, Z.;
Lv, P.; Świerczek, K. MoS₂ Nanosheets Vertically Grown on Graphene Sheets for
Lithium-Ion Battery Anodes. ACS Nano 2014, 8, 5164.

[4] Wang, J.; Liu, J.; Chao, D.; Yan, J.; Lin, J.; Shen, Z. X. Self-assembly of honeycomb-like MoS₂ nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage. *Adv. Mater.* **2014**, 26, 7162.

[5] Wang, W.; Yang, P.; Jian, Z.; Li, H.; Xing, Y.; Zhang, S. Rational design of a 3D MoS₂/dual-channel graphene framework hybrid as a free-standing electrode for enhanced lithium storage. *J. Mater. Chem. A* **2018**, 6, 13797.

[6] Wang, P. P.; Sun, H.; Ji, Y.; Li, W.; Wang, X. Three-dimensional assembly of single-layered MoS₂. *Adv. Mater.* **2014**, 26, 964.

[7] Wang, M.; Li, G.; Xu, H.; Qian, Y.; Yang, J. Enhanced lithium storage performances of hierarchical hollow MoS₂ nanoparticles assembled from nanosheets. *ACS Appl. Mater. Interfaces* **2013**, 5, 1003.

[8] Ren, J.; Ren, R. P.; Lv, Y. K. A flexible 3D graphene@CNT@MoS₂ hybrid foam anode for high-performance lithium-ion battery. *Chemical Engineering Journal* 2018, 353, 419.

[9] Zhou, F.; Xin, S.; Liang, H. W.; Song, L. T.; Yu, S. H. Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance. *Angew. Chem. Int. Ed.* **2014**, 53, 11552.

[10] Ye, J.; Chen, W.; Chen, Q.; Yu, Z.; Lee, J. Y. Poly-assisted synthesis of MoS₂

/graphene composites with enhanced electrochemical performances for reversible lithium storage. *Electrochim. Acta* **2016**, 190, 538.

[11] Xie, D.; Wang, D. H.; Tang, W. J.; Xia, X. H.; Zhang, Y. J.; Wang, X. L.; Gu, C. D.; Tu, J. P. Binder-free network-enabled MoS₂-PPY-rGO ternary electrode for high capacity and excellent stability of lithium storage. *J. Power Sources* 2016, 307, 510.

[12] Wang, J. Z.; Lu, L.; Lotya, M.; Coleman, J. N.; Chou, S. L.; Liu, H. K.; Minett, A.
I.; Chen, J. Development of MoS₂-CNT Composite Thin Film from Layered MoS₂ for Lithium Batteries. *Adv. Energy Mater.* 2013, 3, 789.

[13] Tian, X.; Gao, Q.; Zhang, H.; Li, Z.; Xiao, H.; Zhang, Q.; Ma, L. Uniform smallsized MoS₂ from novel solution-based microwave-assisted method with exceptional reversible lithium storage properties. *Nanoscale* **2018**, 10, 15222.

[14] Ren, W.; Zhou, W.; Zhang, H.; Cheng, C. ALD TiO₂-Coated Flower-like MoS₂ Nanosheets on Carbon Cloth as Sodium Ion Battery Anode with Enhanced Cycling Stability and Rate Capability. *ACS Appl. Mater. Interfaces* **2017**, 9, 487.

[15] Ma, L.; Ye, J.; Chen, W.; Chen, D.; Yang Lee, J. Gemini surfactant assisted hydrothermal synthesis of nanotile-like MoS₂/graphene hybrid with enhanced lithium storage performance. *Nano Energy* **2014**, 10, 144.

[16] Liu, M.; Liu, Y.; Tang, B.; Zhang, P.; Yan, Y.; Liu, T. 3D Conductive Network Supported Monolithic Molybdenum Disulfide Nanosheets for High-Performance Lithium Storage Applications. *Adv. Mater. Interfaces* **2017**, 4, 1601228.