## **Electronic Supporting Information**

## Toward Heat-tolerant Potassium Batteries based on Pyrolyzed Selenium

## Disulfide/ Polyacrylonitrile Positive Electrode and Gel Polymer Electrolyte

Yu Liu,<sup>a</sup> Dezhi Yang,<sup>a</sup> Weigang Wang,<sup>a</sup> Kai Hu,<sup>a</sup> Qinghong Huang,<sup>a</sup> Yi Zhang,<sup>a</sup> Yingchun Miao,<sup>c</sup> Lijun Fu<sup>\*a</sup>, Meng Wu<sup>\*b</sup> and Yuping Wu<sup>\*a</sup>

<sup>a</sup> State Key Laboratory of Materials-Oriented Chemical Engineering, Institute of Advanced Materials (IAM) and College of Energy Science and Engineering, Nanjing Tech University, Nanjing 211800, China.

<sup>b</sup> Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China.

<sup>c</sup> Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China.

\*Corresponding Author: l.fu@njtech.edu.cn; lijunfufu@sina.com (L. Fu); meng.wu@xmu.edu.cn (M. Wu); wuyp@njtech.edu.cn (Y. Wu)



Figure S1. Schematic illustrations of the proposed chemical structure of SeS<sub>2</sub>-CPAN.



Figure S2. SEM image of SeS<sub>2</sub>-CPAN.



Figure S3. Pore size distribution of SeS<sub>2</sub>-CPAN.



Figure S4. XPS spectrum of SeS<sub>2</sub>-CPAN.



Figure S5. Initial charge and discharge profiles of  $SeS_2$ -CPAN for the initial cycles between 0.5 and 3.0 V at 100 mA g<sup>-1</sup>.



Figure S6. SEM image of the  $SeS_2$ -CPAN electrode after 300 cycles.



Figure S7. Charge-discharge curves at various current densities.



Figure S8. Discharge voltage profiles (a) and cycling performance (b) of SeS<sub>2</sub>-CPAN under a constant charge current rate (100 mA g<sup>-1</sup>) with different discharge current rate from 100 to 2000 mA g<sup>-1</sup>.



Fig S9. XRD patterns of SeS<sub>2</sub>-CPAN electrode in K-sulfur batteries after the first discharge and the tenth discharge.



Figure S10 (a) Voltage profile and (b) K-ion diffusion coefficients of SeS<sub>2</sub>-CPAN obtained via the GITT technique during discharge/charge process.

A constant current of 33 mA g<sup>-1</sup> is applied for 0.25 h before cells rest at open circuit for 0.5 h for each step. Figure S10a shows the quasi-equilibrium open-circuit-voltage (OCV) and transient voltage responses during the potassiation and depotassiation processes measured by GITT. From the transient voltage reposed during GITT measurement, the chemical diffusion coefficient  $D_k$  of patassium in the active material can be estimated according to equation (S1)

$$D_{k} = \frac{4}{\pi\tau} \left( \frac{n_{M}V_{M}}{S} \right)^{2} \left( \frac{\Delta E_{s}}{\Delta E_{t}} \right)^{2}$$
(S1)

where  $\tau$  is the duration of the current pulse (1800 s),  $\Delta E_s$  and  $\Delta E_t$  are the change of the voltages during a current pulse and after a current pulse (figure S10a inset), respectively, where  $n_M$  and  $V_M$  are the molar mass (mol) and volume (cm<sup>3</sup>/mol) of the SeS<sub>2</sub>-CPAN active material, respectively, S is the surface area of a single particle<sup>1</sup>. For the SeS<sub>2</sub>-CPAN cathode, we assume that the solid phase consists of spherical particles with radius  $R_s$  of ~1×10<sup>-5</sup>cm, so Equation S1 becomes

$$D_k = \frac{4}{\pi\tau} \left(\frac{R_s}{3}\right)^2 \left(\frac{\Delta E_s}{\Delta E_t}\right)^2 \tag{S2}$$

The calculated chemical diffusion coefficient of K-ion during potassiation and depotassiation is plotted in

Figure S10b and listed in Tables S2 and S3.



Figure S11. (a) CV curves of SeS<sub>2</sub>-CPAN with scanning rates ranging from 0.1 to 2.0 mV s<sup>-1</sup>. (b) Determination of the b-value using the relationship between peak current and scan rate.
Figure S11a show the CV curves at various scan rates from 0.1 to 2.0 mV s<sup>-1</sup>, they display similar

shapes with broad peaks during both cathodic and anodic processes. According to the relationship between the measured current (*i*) and the scan rate (v):<sup>2-5</sup>

$$i = av^{b} \tag{S3}$$

the b-value can be determined by the slope of the log(v)-log(i) plots. In particular, the *b*-value of 0.5 indicates a total diffusion-controlled behavior, whereas 1.0 represents a capacitive process. We analyze the redox peaks, and the plot of log(v) - log(i) is presented in Figure S11b.



Figure S12. The initial charge/discharge curves of K-S battery with porous separator and liquid electrolyte at 50°C.



Figure S13. The optical images of K-S battery with glass fiber separator after cycled at 100 mA g<sup>-1</sup> at 50°C.



Figure S14. (a) Top view and (b) cross-section SEM images of the polymer membrane.



Figure S15. Ionic conductivity of the gel polymer electrolyte as a function of temperature.



Figure S16. Nyquist plots of the potassium// SeS<sub>2</sub>-CPAN cell with gel polymer electrolyte before cycling at different temperatures from 25 to 50°C.



Figure S17. The plating/striping behavior of potassium in a coin cell with the gel polymer electrolyte sandwiched between a potassium-metal and a stainless-steel electrode at a scan rate of 0.2 mV s<sup>-1</sup>.

The behavior of potassium metal striping/plating on stainless steel with the gel polymer electrolyte was tested via cyclic voltammetry with K metal as both the reference and counter electrodes and stainless steel as the working electrode.

The sharp cathodic peak at -0.3 V vs. K/K<sup>+</sup> corresponds to the plating of potassium on working electrode (stainless steel). The anodic peak at 0.21 V (vs. K/K<sup>+</sup>) represents the striping of potassium from stainless steel.



Figure S18. LSV plot of the gel polymer electrolyte sandwiched between a potassium-metal and a stainless-steel electrode at a scan rate of 1.0 mV s<sup>-1</sup>.



Figure S19. Electrochemical performance of SeS<sub>2</sub>-CPAN toward potassium with gel polymer electrolyte at room temperature. (a) Galvanostatic charge and discharge curves at 100 mA  $g^{-1}$  for the first three cycles, (b) cycling stability and coulombic efficiency of SeS<sub>2</sub>-CPAN at 100, 200 and 500 mA  $g^{-1}$ .



Figure S20. Electrochemical performance of SeS<sub>2</sub>-CPAN toward potassium with gel polymer electrolyte. charge-discharge curves at various current rate under (a) 50 °C and (b) room temperature.

| Materials                     | Voltage range(V) | Capacity/cycles/rate/retention<br>(mAh g <sup>-1</sup> /-/mA g <sup>-1</sup> /%) | Capacity/rate<br>(mAh g <sup>-1</sup> /mA g <sup>-1</sup> )    | References |
|-------------------------------|------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------|------------|
| SeS2-CPAN                     | 0.5-3.0          | 211.9/ 200/100/80.6<br>246.5/100/100/93.7                                        | 259.5, 100<br>210.3, 500<br>152.7, 2000                        | This paper |
| $K_{0.5}V_2O_5$               | 1.5-3.8          | 72.2/80/20/90.3                                                                  | 89.9, 10<br>79.2, 50<br>45, 200                                | 6          |
| $K_{0.65}Fe_{0.5}Mn_{0.5}O_2$ | 1.5-4.2          | ~78/350/100/78                                                                   | 124, 50<br>103, 100<br>34, 800                                 | 7          |
| $K_3V_2(PO_4)_3$              | 2.5-4.3          | 52/100/20/-                                                                      | 54, 20<br>25, 200                                              | 8          |
| KPBNPs                        | 2.0-4.0          | 73.2/100/50/-                                                                    | 76, 50<br>46, 300                                              | 9          |
| PTCDA                         | 1.5-3.5          | 90/200/50/-                                                                      | 117, 50<br>92, 100<br>73, 500                                  | 10         |
| PAQS                          | 1.5-3.4          | 90/200/50/-                                                                      | 198,20                                                         | 11         |
| PANI@CMK-3/S                  | 1.2-2.4          | 329.3 mAh g <sub>s</sub> -1/50/50/-                                              | 500, 50                                                        | 12         |
| Sulfur (150°C)                | 1.2-3.0          | ~300/100/2.31mA cm <sup>-2/-</sup>                                               | ~400, 0.33mA cm <sup>-2</sup><br>~285, 3.3 mA cm <sup>-2</sup> | 13         |
| PTCDA@450°C                   | 1.5-3.5          | 98/1000/1000/86.7                                                                | ~125, 100                                                      | 14         |
| Polysulfide<br>catholyte      | 1.2-2.4          | ~320 mAh/g <sub>s</sub> /20 /55.8/94                                             | ~300mAh/g <sub>s</sub> ,111.6<br>~100, 1116                    | 15         |
| KCrS <sub>2</sub>             | 1.8-3.0          | 43/1000/173/90                                                                   | 63,8.65<br>42,865                                              | 16         |
| SPAN                          | 0.8-2.9          | 147/100/125/53                                                                   | 162, 250<br>83, 750                                            | 17         |

Table S1. Electrochemical performance comparison of the recent reported positive electrode materials for K-based batteries.

-

| Discharge              |                                                  | Discharge              |                                          | Discharge              |                                          |
|------------------------|--------------------------------------------------|------------------------|------------------------------------------|------------------------|------------------------------------------|
| capacity               | $\mathbf{D}_k  (\mathbf{cm}^2  \mathbf{s}^{-1})$ | capacity               | $D_k$ (cm <sup>2</sup> s <sup>-1</sup> ) | capacity               | $D_k$ (cm <sup>2</sup> s <sup>-1</sup> ) |
| (mAh g <sup>-1</sup> ) |                                                  | (mAh g <sup>-1</sup> ) |                                          | (mAh g <sup>-1</sup> ) |                                          |
| 6.7                    | 1.90359E-15                                      | 87.1                   | 1.76284E-15                              | 167.5                  | 5.49666E-16                              |
| 13.4                   | 1.78717E-15                                      | 93.8                   | 1.5837E-15                               | 174.2                  | 8.08697E-16                              |
| 20.1                   | 1.97899E-15                                      | 100.5                  | 1.60135E-15                              | 180.9                  | 1.19705E-15                              |
| 26.8                   | 1.67816E-15                                      | 107.2                  | 1.12841E-15                              | 187.6                  | 1.7253E-15                               |
| 33.5                   | 1.69152E-15                                      | 113.9                  | 8.02842E-16                              | 194.3                  | 2.08676E-15                              |
| 40.2                   | 1.73775E-15                                      | 120.6                  | 6.9441E-16                               | 201                    | 1.4652E-15                               |
| 46.9                   | 1.54444E-15                                      | 127.3                  | 3.13659E-16                              | 207.7                  | 1.19011E-15                              |
| 53.6                   | 1.64574E-15                                      | 134                    | 6.94668E-16                              | 214.4                  | 1.27123E-15                              |
| 60.3                   | 1.50436E-15                                      | 140.7                  | 1.09187E-16                              | 221.1                  | 1.14146E-15                              |
| 67                     | 1.29128E-15                                      | 147.4                  | 5.08647E-16                              | 227.8                  | 1.01546E-15                              |
| 73.7                   | 1.32548E-15                                      | 154.1                  | 5.42282E-16                              | 234.5                  | 8.17846E-16                              |
| 80.4                   | 1.52414E-15                                      | 160.8                  | 5.04507E-16                              | 241.2                  | 6.05249E-16                              |

Table S2. The calculated chemical diffusion coefficient for K  $(D_K)$  during potassiation (The data are also shown in Figure S10).

| Discharge              |                     | Discharge              |                                          | Discharge              |                                          |
|------------------------|---------------------|------------------------|------------------------------------------|------------------------|------------------------------------------|
| capacity               | $D_k (cm^2 s^{-1})$ | capacity               | $D_k$ (cm <sup>2</sup> s <sup>-1</sup> ) | capacity               | $D_k$ (cm <sup>2</sup> s <sup>-1</sup> ) |
| (mAh g <sup>-1</sup> ) |                     | (mAh g <sup>-1</sup> ) |                                          | (mAh g <sup>-1</sup> ) |                                          |
| 234.5                  | 5.04684E-15         | 154.1                  | 5.91772E-16                              | 73.7                   | 1.21461E-15                              |
| 227.8                  | 5.93395E-15         | 147.4                  | 5.07253E-16                              | 67                     | 9.50866E-16                              |
| 221.1                  | 5.26353E-15         | 140.7                  | 4.27157E-16                              | 60.3                   | 1.01749E-15                              |
| 214.4                  | 4.43301E-15         | 134                    | 9.68329E-16                              | 53.6                   | 8.62046E-16                              |
| 207.7                  | 3.72482E-15         | 127.3                  | 1.14784E-15                              | 46.9                   | 7.50131E-16                              |
| 201                    | 2.6222E-15          | 120.6                  | 1.58546E-15                              | 40.2                   | 5.71886E-16                              |
| 194.3                  | 1.46035E-15         | 113.9                  | 1.60812E-15                              | 33.5                   | 4.41112E-16                              |
| 187.6                  | 1.36886E-15         | 107.2                  | 1.63363E-15                              | 26.8                   | 2.01585E-16                              |
| 180.9                  | 1.0668E-15          | 100.5                  | 1.38236E-15                              | 20.1                   | 1.861E-16                                |
| 174.2                  | 7.17035E-16         | 93.8                   | 1.17061E-15                              | 13.4                   | 1.14326E-16                              |
| 167.5                  | 6.09841E-18         | 87.1                   | 1.13976E-15                              | 6.7                    | 1.50016E-16                              |
| 160.8                  | 5.42987E-16         | 80.4                   | 1.0747E-15                               |                        |                                          |

Table S3. The calculated chemical diffusion coefficient for K  $(D_K)$  during depotassiation (The data are also shown in Figure S10).

## References

- L. C. Zheng Shen, Christopher D. Rahn, and Chao-YangWang, J. Electrochem. Soc., 2013, 160, A1482.
- 2 V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P. L. Taberna, S. H. Tolbert, H. D. Abruna, P. Simon and B. Dunn, *Nat. Mater.*, 2013, **12**, 518-522.
- 3 J. Ding, H. Zhou, H. L. Zhang, L. Y. Tong and D. Mitlin, Adv. Energy Mater., 2018, 8.
- 4 Z. Li, J. Zhang, Y. Lu and X. W. D. Lou, *Sci. Adv.*, 2018, 4, eaat1687.
- 5 H. W. Xuming Yang, Denis Y. W. Yu, and Andrey L. Rogach, *Adv. Funct. Mater.*, 2018, 28, 1706609.
- L. Deng, X. Niu, G. Ma, Z. Yang, L. Zeng, Y. Zhu and L. Guo, *Adv. Funct. Mater.*, 2018, 28, 1800670.
- 7 T. Deng, X. Fan, J. Chen, L. Chen, C. Luo, X. Zhou, J. Yang, S. Zheng and C. Wang, *Adv. Funct. Mater.*, 2018, 28, 1800219.
- 8 J. Han, G. N. Li, F. Liu, M. Wang, Y. Zhang, L. Hu, C. Dai and M. Xu, Chem. Commun., 2017, 53, 1805-1808.
- 9 C. Zhang, Y. Xu, M. Zhou, L. Liang, H. Dong, M. Wu, Y. Yang and Y. Lei, Adv. Funct. Mater., 2017, 27, 1604307.
- 10 Y. Chen, W. Luo, M. Carter, L. Zhou, J. Dai, K. Fu, S. Lacey, T. Li, J. Wan, X. Han, Y. Bao and L. Hu, *Nano Energy*, 2015, **18**, 205-211.
- 11 Z. Jian, Y. Liang, I. A. Rodríguez-Pérez, Y. Yao and X. Ji, *Electrochem. Commun.*, 2016, 71, 5-8.
- 12 Q. Zhao, Y. X. Hu, K. Zhang and J. Chen, Inorg. Chem., 2014, 53, 9000-9005.
- 13 X. Lu, M. E. Bowden, V. L. Sprenkle and J. Liu, Adv. Mater., 2015, 27, 5915-5922.
- 14 L. Fan, R. Ma, J. Wang, H. Yang and B. Lu, Adv. Mater., 2018, 30, e1805486.
- 15 J.-Y. Hwang, H. M. Kim, C. S. Yoon and Y.-K. Sun, ACS Energy Lett., 2018, **3**, 540-541.
- 16 N. Naveen, W. B. Park, S. P. Singh, S. C. Han, D. Ahn, K. S. Sohn and M. Pyo, *Small*, 2018, DOI: 10.1002/smll.201803495, e1803495.

17 Y. Liu, W. Wang, J. Wang, Y. Zhang, Y. Zhu, Y. Chen, L. Fu and Y. Wu, Chem. Commun., 2018, 54, 2288-2291.