Electronic Supplementary Information

Charge-transfer descriptor on the cycle performance of β-Li₂MO₃ cathode: Role of oxygen dimer

Inkyung Kim,^a Joongyeop Do,^a Heejin Kim,^{*b} and Yousung Jung^{*ac}

^a Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
^b Division of Analytical Science, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon 34133, Republic of Korea

^c Graduate School of Energy, Environment, Water and Sustainability, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

Target comp	Competing species	E ^{hull} (meV atom ⁻¹)
Li ₂ CrO ₃	$1/2 \text{ Li}_3 \text{CrO}_4 + 1/2 \text{ Li} \text{CrO}_2$	25.9
Li ₂ MnO ₃	Li ₂ MnO ₃ (polymorph, C2/m)	0.7
Li ₂ FeO ₃	$1/2 \operatorname{Li}_2 O_2 + \operatorname{Li} FeO_2$	5.4
Li ₂ CoO ₃	$1/5 \text{ Li}_7 \text{Co}_5 \text{O}_{12} + 3/10 \text{ Li}_2 \text{O}_2$	26.4
Li ₂ NiO ₃	Li ₂ NiO ₃ (polymorph, C2/m)	1.0
Li ₂ MoO ₃	1/3 Li ₄ MoO ₅ + 1/3 Li ₂ MoO ₄ + 1/3 Mo	17.7
Li ₂ TcO ₃	Li ₂ TcO ₃ (polymorph, C2/c)	34.3
Li ₂ RuO ₃	Li ₂ RuO ₃ (polymorph, C2/m)	0.4
Li ₂ RhO ₃	Li ₂ RhO ₃ (polymorph, C2/m)	0.8
Li ₂ PdO ₃	Li ₂ PdO ₃ (polymorph, C2/m)	0.1
Li ₂ WO ₃	$1/3 \text{ Li}_2 \text{WO}_4 + 1/3 \text{ Li}_4 \text{WO}_5 + 1/3 \text{ W}$	144.5
Li ₂ ReO ₃	$3/14 \text{ LiReO}_4 + 5/14 \text{ Li}_5 \text{ReO}_6 + 3/7 \text{ Re}$	92.2
Li ₂ OsO ₃	1/3 Li ₅ OsO ₆ + 1/3 LiOsO ₃ + 1/3 Os	39.4
Li ₂ IrO ₃	Li ₂ IrO ₃ (polymorph, C2/m)	-5.0
Li ₂ IPtO ₃	Li ₂ PtO ₃ (polymorph, C2)	2.7

Table S1. Phase stability (E^{hull}) of 15 β -Li₂MO₃ materials.

	PBE	PBE0	HSE06	Experiment
<i>U</i> (eV)	6.704	8.809	8.032	-
Δ (eV)	7.187	9.228	8.459	-
R ^o	0.189	0.661	0.674	-
Voltage (V)	3.242	3.883	3.860	3.964

Table S2. U, Δ , \mathbb{R}^{O} and voltage values of β –Li₂IrO₃.

Fig. S1. Partial density of states (PDOS) of β -Li₂MO₃ of 3d TMs. Vertical dashed line represents band centers.

Fig. S1. (Continued) Partial density of states (PDOS) of β -Li₂MO₃ of 4d TMs. Vertical dashed line represents band centers.

Fig. S1. (Continued) Partial density of states (PDOS) of β -Li₂MO₃ of 5d TMs. Vertical dashed line represents band centers.

	Band gap of β-Li ₂ MO ₃	Distortion index(x 10 ⁴) of β-Li ₂ MO ₃
Mn	3.84	0.05
Fe	2.19	37.487
Со	2.76	3.578
Ni	2.92	0.021
Мо	1.45	2.76
Tc	2.53	0.095
Ru	1.61	5.734
Rh	1.49	0.684
Pd	3.51	0.035
W	1.45	8.294
Re	2.95	2.448
Os	1.39	0.487
Ir	1.43	0.734
Pt	4.02	0.034

Table S3. Band gap and distortion index of β -Li₂MO₃.

Table S4. The charge variation of TM (Q^M) and oxygen (Q^O) when β -Li₂MO₃ is charged to β -MO₃ for M = Mo, Tc, Ru, Rh, W, Re, Os, and Ir, and to β '-MO₃ for M = Mn, Fe, Co, Ni and Pd.

	Q ^M	Q ⁰
Mn	-0.935	7.222
Fe	-0.032	6.213
Со	-0.815	7.045
Ni	-0.494	6.360
Мо	2.405	3.424
Tc	2.010	3.865
Ru	1.962	3.651
Rh	0.552	5.067
Pd	-2.091	7.383
W	3.187	2.113
Re	2.917	1.832
Os	2.565	2.893
Ir	1.979	3.862
Pt	0.802	4.302

1

Fig. S2. Crystal structure of intermediate states for the β -to- β ' phase transformation.

Fig. S3. Partial density of states (PDOS) results: (a) β -WO₃ and (b) β -IrO₃.

Fig. S4. (a) The average voltage when β -Li₂MO₃ is charged to β -MO₃ and theoretical capacity. (b) The average voltage when β -Li₂MO₃ is charged to β -MO₃ and theoretical capacity.