Supporting Information

A Mechanistic Study of Mesoporous TiO₂ Nanoparticle Negative Electrode Material with Varying Crystallinity for Lithium Ion Batteries

Changjian Deng,^{a,b,c,*} Miu Lun Lau,^b Chunrong Ma,^b Paige Skinner,^b Yuzi Liu,^d Wenqian Xu,^e Hua Zhou,^e Xianghui Zhang,^f Di Wu,^f Yadong Yin,^g Yang Ren,^e Jorge Perez,^b Diana Jaramillo,^b Pete Barnes,^b Dewen Hou,^b Michael Dahl,^{b,g} Bethany Williford,^b Chong Zheng^{a,c} and Hui (Claire) Xiong ^{b,h,*}

- a. Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, China
- b. Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA
- c. Department of Chemistry and Biochemistry, Northern Illinois University, Dekalb, IL, 60115, USA
- d. Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
- e. Advanced Photon Sources, Argonne National Laboratory, Lemont, IL, 60439, USA
- f. Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
- g. Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
- h. Center for Advanced Energy Studies, 995 University Boulevard, Idaho Falls, ID, 83401, USA

Fig. S1 Pore size distribution of TiO_2 nanoparticle samples.

Fig. S2 Raman spectra of pristine mesoporous TiO_2 nanoparticle samples.

Fig. S3 TEM images of cycled electrodes: (a) $A-TiO_2$, (b) PC- TiO_2 and (c) FC- TiO_2 . HRTEM images of (d) $A-TiO_2$, (e) PC- TiO_2 and (f) FC- TiO_2 . And SAED patterns of (g) $A-TiO_2$, (h) PC- TiO_2 and (i) FC- TiO_2 .

The diffusion coefficient can be expressed as the following equation: ¹

$$D_{Li+} = \frac{\pi}{4} \left(\frac{m_B V_M}{M_B S}\right)^2 \left(\frac{\Delta E_S}{\tau \left(\frac{dE_t}{d\sqrt{\tau}}\right)^2}\right)^2, \tau \ll \frac{L^2}{D_{Li+}}$$
(1)

where m_B , V_M , M_B , S and τ are mass, molecular volume, molecular weight, active surface area and current pulse time of the electrode. If E versus $\sqrt{\tau}$ shows a linear behavior during the current pulse (Figure S2), the equation can be transformed into:

$$D_{Li+} = \frac{\pi}{4\tau} \left(\frac{m_B V_M}{M_B S}\right)^2 \left(\frac{\Delta E_S}{\Delta E_t}\right)^2, \tau \ll \frac{L^2}{D_{Li+}}$$
(2)

Where ${}^{\Delta E_S}$ and ${}^{\Delta E_t}$ for each titration are illustrated in Figure S2.

Fig. S4 Linear behavior of the E vs $\tau^{1/2}$ relationship.

Fig. S5 Schematic of GITT technique.

References

1 Weppner, W., and Robert A. Huggins. J. Electrochem. Soc. 1977, **124**, 1569-1578.