Supporting Information

Efficient UV-vis-IR photothermocatalytic selective ethanol oxidation on MnO_x/TiO₂ nanocomposite significantly enhanced by a novel photoactivation

Yi Yang, ^{ab} Shaowen Wu, ^a Yuanzhi Li, *^a Qian Zhang ^a and Xiujian Zhao^a

^aState Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122

Luoshi Road, Wuhan 430070, P. R. China. Email: liyuanzhi66@hotmail.com

^bCollege of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China.

Scheme S1. Schematic illustration of a setup for testing photothermocatalytic activity of the samples for selective ethanol oxidation under the irradiation from a Xe lamp.

Scheme S2. Schematic illustration of a setup for conducting temperature programmed ethanol oxidation in the absence O_2 in the dark and under UV-vis-IR irradiation.

Figure S1. XRD patterns of the samples: MnO_x/TiO_2 -A (a), MnO_x/TiO_2 -B (b), MnO_x/TiO_2 -C (c)

and MnO_x/TiO_2 -D (d).

Figure S2. TEM EDX mapping of the elements in MnO_x/TiO_2 -C

Figure S3. N₂ adsorption-desorption of the samples: MnO_x/TiO₂-A (A), MnO_x/TiO₂-B (B), MnO_x/TiO₂-C (C), and MnO_x/TiO₂-D (D).

Figure S4. BJH adsorption pore size distribution of the samples: MnO_x/TiO₂-A (A), MnO_x/TiO₂-B (B), MnO_x/TiO₂-C (C), and MnO_x/TiO₂-D (D).