Supporting Information

A Chlorinated Nonacyclic Carbazole-Based Acceptor Affords over 15% Efficiency in Organic Solar Cells

Tsung-Wei Chen, ^{ad} Kuan-Lin Peng, ^{ad} You-Wei Lin, ^{ad} Yi-Jia Su, ^{ad} Ko-Jui Ma, ^{ad} Ling Hong, ^{bc} Chia-Chih Chang, ^{ad} Jianhui Hou, ^{*bc} and Chain-Shu Hsu ^{*ad}

^{a.} Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd, Hsinchu 30010, Taiwan E-mail: <u>cshsu@mail.nctu.edu.tw</u>

^{b.} State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China E-mail: <u>hjhzlz@iccas.ac.cn</u>

^{c.} University of Chinese Academy of Sciences, Beijing 100049, P. R. China

^{d.} Center for Emergent Functional Matter Science, National Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan

Contents

S1. Chemical structures	S3
-Figure S1. NFAs mentioned in introduction	S3
-Figure S2. C-PCBSD	
S3	

S2.	Other	studies	about	conju	gation	extension	and
-Table	S1. Prev	vious efforts	in c	conjugation	extensior	n and	chlorination
		S3					
S3. Experi	mental section	on					S4
-Figure S3 S4	. High temp	erature gel per	meation chr	omatography	analysis of	PM6	
-Figure S4 S5	. Synthetic	scheme of DTT(C-4F and DT	TC-4Cl			
-Figure S5	. ¹ H NMR and	I ¹³ C NMR spectr	a of DTTC-4	F			S10
-Figure	S6.	¹ H NMR	and	¹³ C N	MR sp	ectra of	DTTC-
4Cl			S	11			
S4. Therm	al properties	s of DTTC-4F and	I DTTC-4Cl				S12
-Figure S7	. TGA diagra	m					S12
-Figure S8	. DSC diagraı	n					S12
S5. Structi	ural simulatio	on of DTTC-4F ar	nd DTTC-4Cl				S12
-Figure S9	. DFT calcula	tion					S12
S6. Electro	onic property	of DTC-4F, DTT	C-4F and DT	TC-4Cl			S13
-Figure S1	0. CV diagrar	n					S13
S7. UV-vis	absorption i	measurement					S13
-Figure	S11.	The	UV-vis	abso	orption	spectrum	n of
blends				S13			
S8. Electro	on/hole mob	ility obtained fro	om SCLC met	hod			S14
-Figure			S12.Electr	on/hole-only			SCLC
measurem	nent			S1	4		
-Table S2.	Summary of	electron/hole n	nobility				S14
S9. Non-r	adiative en	ergy loss meas	surement				
S14							
-Figure							S13.EQE _{EL}
measurem	nent		•••••			S14	

-Table		S3.	9	Summary		of	I	EQE _{EL}	and			ΔE_3
							.S14					
S10. ТЕ S16	M me	asurei	ments									
-Figure S	514. TEN	۸ ima	ges of blend	ds								S16
S11. cuts	(GIWAX	(S	data	(obtained S17	,	from	1D			line
-Figure cuts	S15.	2D	GIWAXS	patterns	of	DTTC-4F	and	DTTC-4Cl	with	1	D	line
-Table S4	4. Sumn	nary o	f d-spacing									S17
S12. Ref	erences	5										S17

S1. Chemical structures

Figure S2. C-PCBSD

S2. Other studies about conjugation extension and chlorination

Strategy	Modification	PCE improvement	Reference
	F6IC to SN6IC-4F	7.1% to 13.2%	Chem. Mater. 2018, 30 , 5429–5434
Conjugation extension	IDTIC to IDTTIC	5.7% to 11.2%	Adv. Funct. Mater.2018, 28 , 1802895
	IDTO-TT-4F to IDTO-T-4F	10.2% to 12.6%	Adv. Energy Mater. 2018, 8 , 1801618
	PBDB-T-2F to PBDB-T-2Cl	13.2% to 14.4%	Adv. Mater. 2018, 30 , 1800868
Chlorination	IDIC-4H to IDIC-4Cl	4.6% to 9.2%	ACS Appl. Mater. Interfaces 2018, 10 , 39992-40000
	BTP-4F to BTP-4Cl	15.6% to 16.5%	Nature Communication. 2019, 10 , 2515-2523

Table S1. Previous efforts in conjugation extension and chlorination with PCE improvement

S3. Experimental section

Peak start	22,506	-51.432	277	Mw	73
Peak top	23.114	334.743	69	Mz	89
Peak end	24.373	-54.581	1	Mz+1	105
				Mv	73
Height [mV]			387.213	Мр	71
Area [mV*s]			10883.595	Mz/Mw	1.212
Height% [%]			77.772	Mw/Mn	1.302
[eta]			73.36626	Mz+1/Mw	1.429

Molecular mass calculation result (RI)

Total						
_		[min]	[mV]	[mol]	Mn	132
-	Peak start	16.664	-49.730	210,878	Mw	20,397
	Peak top	23.114	334.743	69	Mz	54,767
	Peak end	24.373	-54.581	1	Mz+1	74,039
					Mv	20,397
	Height [mV]			497.882	Мр	71
	Area [mV*s]			25532.008	Mz/Mw	2.685
	Height% [%]			100.000	Mw/Mn	154.950
	[eta]			20396.96694	Mz+1/Mw	3.630

Figure S3. High temperature gel permeation chromatography analysis of PM6

Materials and Instruments: PM6 was synthesized in accord to the literature precedents.¹ Other chemicals were purchased from Aldrich or Acros and used as received. C-PCBSD and Compound 1 was synthesized in accord to our previous publications.²⁻⁴ ¹H and ¹³C NMR spectra were measured using a Varian 400 MHz instrument spectrometer. Differential scanning calorimeter (DSC) was measured on a TA Q200 Instrument and thermogravimetric analysis (TGA) was recorded on a Perkin Elmer Pyris under nitrogen atmosphere at a heating rate of 10 °C min⁻¹. Solution/film absorption spectra were collected on a HP8453 UV-vis spectrophotometer. The electrochemical cyclic voltammetry (CV) was conducted on a CH Instruments Model 611D. A carbon glass coated with a thin polymer film was used as the working electrode and Ag/Ag^+ electrode as the reference electrode, while 0.1 M tetrabutylammonium hexafluorophosphate (Bu₄NPF₆) in dichloromethane was used as the electrolyte. CV curves were calibrated using ferrocene as the standard, whose oxidation potential is set at -4.8 eV with respect to zero vacuum level. The HOMO/LUMO energy levels were obtained from the equation of HOMO = $-(E_{ox}^{onset} - E_{ferrocene}^{onset} + 4.8)$ eV and LUMO = -(E_{red}^{onset} – E_{ferrocene}^{onset} + 4.8) eV. Electron/hole mobility were obtained from SCLC method as the equation J = 9 $\mu \epsilon_0 \epsilon_r V^2$ / (8 L³) noted. GIWAXS measurement was conducted at TLS13A beamline in NSRRC. The coherence length was obtained from the FWHM of (010) signal using Scherrer equation. EQE_{EL} measurements were carried out by applying external voltage/current sources through the devices (ELCT-3010, Enlitech) from 1 to 2 V. ΔE_3 was acquired from the equation $\Delta E_3 = -kT \ln(EQE_{EL})$. High Temperature EcoSEC GPC system (HLC-8321GPC HT) was calibrated using polystyrene standard.

Figure S4. Synthetic scheme of DTTC-4F and DTTC-4Cl

Synthesis of compound **2**: **Compound 1** was synthesized in accord to our previous work.^{2,3} A mixture of **compound 1** (0.5 g, 0.76 mmol), ethyl 2-bromothieno[3,2-b] thiophene-3-carboxylate (0.49 g, 1.68 mmol), $K_2CO_3(0.63 g, 4.56 mmol)$, $Pd(PPh_3)_4$ (0.088 g, 0.08 mmol), Aliquat 336 (0.1 ml) was added in 6.2 ml degased toluene and 1.25 ml deionized water and then refluxed in 100 °C over 24 hours. After the mixture was cooled to room temperature, the mixture was poured into $NH_4Cl_{(aq)}$ and extracted with ethyl acetate (EA), and then dried over anhydrous $MgSO_4$. After the removal of solvent, the residue was purified by column chromatography on silica gel using n-hexane/EA (20:1) as eluent to give **compound 2** as a yellow solid (480 mg, 77%).

¹H NMR (400MHz, CDCl₃): δ/ppm: 8.133 (br, 2H), 7.818 (s, 1H), 7.609 (s, 1H), 7.475 (br, 4H), 7.285 (d, J = 5.6Hz, 2H), 4.567 (m, 1H), 4.289 (br, 4H), 2.284 (m, 2H), 1.936 (m, 1H), 1.242-1.062 (m, 32H), 0.803 (t, J = 6.8 Hz, 6H)

HRMS (FAB) Calcd for C₄₇H₅₅NO₄S₄ [M]⁺: 825.3008 ; found: 825.3009.

Synthesis of compound 3: Compound 2 (1 g, 1.21 mmol) was fire-dried over 3 times repeatedly in vacuum. Anhydrous THF (5 ml) was then injected with 4-octylphenyl magnesium bromide (12.1 mmol) was slowly added as Grignard reagent. The reaction was controlled in 70 °C and refluxed overnight. The reaction was quenched by methanol and extracted with $NH_4Cl_{(aq)}/EA$. To remove the residual 4-octylbenzene, column chromatography was conducted

using silica gel with n-hexane/EA (20:1) as eluent to give **compound 3** as a yellow liquid (1.12 g, 0.74 mmol).

Synthesis of compound **4**: A mixture of **Compound 3** (1.44 g, 0.964 mmol) and acetic acid (50 ml) was heated in 120 °C and refluxed for 2 hours. After extracted by EA:NaOH, the mixture was purified by silica column chromatography exploiting n-hexane/EA (50:1) as eluent. Recrystallization with methanol and EA was carried out to acquire **compound 4** as a yellow solid (1 g, 57%)

¹H NMR (CDCl₃, 400 MHz): δ/ ppm: 7.615 (d, J = 7.615, 2H), 7.518 (s, 1H), 7.383 (s, 1H), 7.310 (d, J = 5.2 Hz, 2H), 7.269 (d, J = 6.8 Hz, 2H), 7.197 (d, J = 8.4 Hz, 8H), 7.041 (d, J = 8.4 Hz, 8H), 4.595 (m, 1H), 2.522 (t, J = 8Hz, 8H), 2.327 (m, 2H), 2.015 (m, 2H), 1.275-1.969 (m, 75H), 0.857 (t, J = 6.8 Hz, 12H), 0.784 (t, J = 6.8 Hz, 6H)

¹³C NMR (CDCl₃, 400 MHz): δ/ ppm: 146.497, 144.751, 143.973, 142.440, 141.537, 141.499 , 138.915, 135.958, 135.522, 134.118, 128.452, 128.209, 126.403, 122.771, 122.337, 120.449, 117.640, 117.291, 102.074, 99.489, 62.599, 57.051, 35.739, 33.951, 32.020, 31.894, 31.439, 29.674, 29.587, 29.488, 29.375, 29.352, 27.192, 22.809, 22.722, 14.252, 14.187 (multiple carbon peaks result from phenomenon of atropisomerism) HRMS (FAB) calcd for C₉₉H₁₂₇NS₄ [M]⁺: 1457.8846; found: 1457.8856

Synthesis of compound 5: A mixture of **compound 4** (1 g, 0.68 mmol) and 1,2-dichloroethane (20 ml) was deoxygenated with nitrogen for 30 min and then added a solution of POCl₃ (0.31 ml, 3.43 mmol) in DMF (4.72 mL, 61 mmol) at 0 °C. After being stirred at 60 °C for 24 hours, the mixture was poured into $Na_2CO_{3(aq)}$ and extracted with CH_2Cl_2 . The organic layer was washed with water, and then dried over anhydrous $MgSO_4$. After the removal of solvent, the residue was purified by column chromatography on silica gel using n-hexane/CH₂Cl₂ (1:2) as eluent to give **compound 5** as an orange solid (0.8 g, 88%).

¹H NMR (CDCl₃ , 400MHz): δ/ ppm: 9.889 (s, 2H), 7.982 (m, 4H), 7.605 (s,1H), 7.472 (s, 1H), 7.160 (d, J= 8 Hz, 8H), 7.055 (d, J= 8 Hz, 8H), 4.620 (m, 1H) , 2.523 (t, J= 7.8 Hz, 8H), 2.325 (m, 1H), 2.022 (m, 1H), 1.275-1.161 (m, 75H), 0.855 (t, J = 7 Hz, 12H), 0.775 (t, J = 6.4 Hz, 6H)

¹³C NMR (CDCl₃, 400MHz): δ/ ppm: 182.935, 150.717, 146.68, 145.742, 144.155, 142.763, 142.049, 141.386, 140.759, 140.508, 139.222, 135.268, 134.850, 129.970, 128.702, 127.989, 123.928, 122.513, 118.130, 117.796, 103.155, 100.628, 62.690, 57.263, 35.704, 33.936,

32.004, 31.864, 31.420, 29.629, 29.595, 29.560, 29.454, 29.344, 29.302, 27.132, 22.787, 22.699, 14.237, 14.165 (multiple carbon peaks result from phenomenon of atropisomerism) HRMS (FAB) calcd for C₁₀₁H₁₂₇NO₂S₄ [M]⁺: 1513.8744; found: 1513.8748

Synthesis of DTTC-4F and DTTC-4CI: A mixture of compound 5 (0.2 g, 0.11 mmol), 2-(5,6difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (0.12 g, 0.54 mmol) or 2-(5,6dichloro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (0.14 g, 0.54 mmole) in CHCl₃ (11 ml) was deoxygenated with nitrogen for 30 minutes. Pyridine (0.11 ml) was added and then refluxed for 5 hours. After the mixture was cooled to room temperature, the mixture was poured into water and extracted with CH_2Cl_2 . The organic layer was washed with water, and then dried over anhydrous $MgSO_4$. After removal of solvent, the residue was purified by column chromatography on silica gel using n-hexane/CH₂Cl₂ (1:2) as eluent and recrystallized by methanol and CH_2Cl_2 to give DTTC-4F/DTTC-4Cl as dark blue solid (DTTC-4F: 0.2 g, 78%; DTTC-4Cl: 0.19 g, 73%).

DTTC-4F

¹H NMR ($CDCI_3$, 400MHz) : δ / ppm : 8.869 (s, 2H), 8.535 (m, 2H), 8.275 (s, 2H), 8.014 (d, J = 12.8 Hz, 2H), 7.680 (m, 3H), 7.553 (s, 1H), 7.243 (d, J = 7.6 Hz, 8H), 7.118 (d, J = 7.2 Hz, 8H), 4.648 (m, 1H), 2.552 (t, J = 7.6 Hz, 8H), 2.347 (m, 2H), 2.047 (m, 2H), 1.295-1.175 (m, 71H), 0.857 (t, J = 6.4 Hz, 12H), 0.787 (t, J = 6.4 Hz, 6H)

¹³C NMR (CDCl₃, 400MHz): δ/ppm: 185.937, 185.485, 155.912, 155.772, 155.491, 153.316 , 153.180, 148.576, 147.563, 146.835, 143.635, 143.210, 142.311, 140.137, 139.658, 139.241, 138.603, 137.746, 136.702, 135.196, 134.786, 134.653, 134.592, 128.850, 128.008, 124.927, 123.530, 121.352, 118.456, 118.115, 115.181, 114.961, 114.506, 114.418, 112.817, 112.635, 103.842, 101.364, 69.460, 62.800, 57.468, 35.739, 33.928, 32.008, 31.864, 31.428, 29.841, 29.689, 29.576, 29.454, 29.363, 29.295, 27.139, 24.244, 22.794, 22.703, 14.233, 14.172

HRMS (FAB) calcd for $C_{125}H_{131}F_4N_5O_2S_4$ [M]⁺ : 1937.9116 ; found : 1937.9112

DTTC-4Cl

¹H NMR ($CDCI_3$, 400MHz) : δ / ppm : 8.882 (s, 2H), 8.757 (s, 2H), 8.273 (d, 2H), 8.01 (d, J = 13.2 Hz, 2H), 7.939 (s, 1H), 7.677 (s, 1H), 7.548 (s, 1H), 7.233 (d, J = 8.4 Hz, 8H), 7.112 (d, J = 8.4 Hz, 8H), 4.641 (m, 1H), 2.545 (t, J = 7.8 Hz, 8H), 2.335 (m, 2H), 2.058 (m, 1H), 1.303-1.097 (m, 75H), 0.851 (t, J = 6.8 Hz, 12H), 0.781 (t, J = 6.8 Hz, 6H)

¹³C NMR (CDCl₃, 400MHz): δ/ ppm: 186.036, 158.394, 155.832, 148.895, 147.616, 146.910, 143.783, 143.245, 142.338, 140.102, 139.757, 139.453, 139.165, 138.812, 137.913, 136.140, 135.222, 134.801, 128.866, 128.004, 127.052, 125.276, 125.006, 123.617, 121.348, 118.471, 118.156, 114.506, 103.907, 101.428, 69.502, 62.804, 57.483, 35.742, 33.932, 32.012, 31.868, 31.428, 29.693, 29.579, 29.454, 29.367, 29.299, 27.143, 22.798, 22.707, 14.240, 14.176

HRMS (FAB) calcd for C₁₂₅H₁₃₁Cl₄N₅O₂S₄ [M]⁺: 2001.7934; found: 2001.7945

Fabrication of Inverted OSC devices: Inverted devices were fabricated in the structure of ITO/ZnO/C-PCBSD/active layer/MoO₃/Al. The ITO-coated glass was cleaned sequentially by detergent, DI water, acetone and isopropyl alcohol. The zinc acetate precursor was dissolved in 2-methoxy ethanol with ethanol amine to enhance the solubility. A thin ZnO film was deposited on a clean ITO-coated glass by spin-coating the precursor solution at 4000 rpm for 30 seconds and thermal annealing at 170 °C for 30 minutes in air. Next, the device was transferred into a nitrogen-filled glovebox for C-PCBSD deposition. The C-PCBSD o-DCB solution was prepared in a concentration of 7 mg/ml and stirred at 65 °C over 8 hours. The C-PCBSD solution was then filtered before deposition. The C-PCBSD layer was spin-coated at 8000 rpm for 30 seconds and thermal annealed at 160 °C for 15 minutes as cross-linking process. Also, the PM6:NFA chlorobenzene (CB) solutions were prepared in a PM6 concentration of 10 mg/ml with NFA concentration of 12 (DTC-4F), 11 (DTTC-4F) and 10 (DTTC-4Cl) mg/ml. Besides, 0.1v% of DIO, 0.5v% of DPE and 0.5v% of DIO were added into the PM6:DTC-4F, PM6:DTTC-4F and PM6:DTTC-4Cl solutions, respectively. The active layer was deposited under an optimal spin-coating condition of 1400 rpm for 60 seconds and thermal annealed at their optimal conditions of 100 °C (PM6:DTC-4F), 140 °C (PM6:DTTC-4F) and 90 °C (PM6:DTTC-4Cl) for 10 minutes. Last, 7 nm of MoO₃ and 100 nm of Al was sequentially deposited and the fabrication of inverted OSC device was complete.

Figure S6. ¹H NMR and ¹³C NMR spectra of DTTC-4Cl

S4. Thermal properties of DTTC-4F and DTTC-4Cl

Figure S7. TGA traces of DTTC-4F and DTTC-4Cl. The T_d values of DTTC-4F and DTTC-4Cl are 337 and 338 °C, respectively.

Figure S8. DSC diagrams of DTTC-4F and DTTC-4Cl.

S5. Structural simulation

Figure S9. B3LYP/6-31G(d,p) DFT calculation of DTTC-4F and DTTC-4Cl.

S6. Electronic property of DTC-4F, DTTC-4F and DTTC-4Cl

Figure S10. CV diagrams of DTC-4F, DTTC-4F and DTTC-4Cl neat films. The HOMO/LUMO of DTC-4F, DTTC-4F and DTTC-4Cl are -5.79/-3.92, -5.69/-3.91 and -5.72/-4.03 eV, respectively.

S7. UV-vis absorption measurement

Figure S11. The UV-vis absorption spectrum of PM6:DTC-4F, PM6:DTTC-4F and PM6:DTTC-4Cl blends.

S8. Electron/hole mobility obtained from SCLC method

Figure S12. (a) Electron-only and (b) hole-only measurements of PM6:DTC-4F, PM6:DTTC-4F and PM6:DTTC-4Cl devices.

Table S2. Summary of electron/hole mobility of PM6:DTC-4F, PM6:DTTC-4F and PM6:DTTC-4Cl devices.

Blend	μ _e (cm² V ⁻¹ s ⁻¹)	μ _h (cm² V ⁻¹ s ⁻¹)
PM6:DTC-4F	3.51×10 ⁻⁴	2.56×10 ⁻⁴
PM6:DTTC-4F	3.02×10 ⁻⁴	2.70×10 ⁻⁴
PM6:DTTC-4Cl	7.91×10 ⁻⁴	6.22×10 ⁻⁴

S9. Non-radiative energy loss measurement

Figure S13. (a) EQE_{EL} measurement and (b) ΔE_3 measurement of PM6 (also known as PBDB-TF)-based devices.

Table S3. Summary of EQE_{EL} and ΔE_3 afforded by PM6-based devices.

Blend	EQE _{EL} (%)	ΔE_3 (eV)
PBDB-TF:IT-4F	3.34×10 ⁻⁶	0.326
PBDB-TF:DTC-4F	1.35×10 ⁻⁵	0.289

PBDB-TF:DTTC-4F	3.30×10 ⁻⁵	0.267
PBDB-TF:DTTC-4Cl	3.07×10 ⁻⁵	0.269
PBDB-TF:Y6	1.29×10 ⁻⁴	0.231

S10. TEM measurements

(a) PM6:DTC-4F

(b) PM6:DTTC-4F

Figure S14. TEM images of (a) PM6:DTC-4F, (b) PM6:DTTC-4F and (c) PM6:DTTC-4Cl blends.

Figure S15. 2D GIWAXS patterns of (a) DTTC-4F and (b) DTTC-4Cl neat films with (c) their corresponding 1D linecuts.

Table S4. D-spacing of PM6, DTC-4F, DTTC-4F and DTTC-4Cl neat films and PM6:DTC-4F,PM6:DTTC-4F and PM6:DTTC-4Cl blends.

	(0:	_	
Composition	d-spacing	CL	Note
	(Å)	(Å)	
PM6	3.76	-	Ref. 3
DTC-4F	4.27	-	Ref. 3
DTTC-4F	3.61	-	This work
DTTC-4Cl	3.59	-	This work
PM6:DTC-4F	3.87	26.27	Ref. 3
PM6:DTTC-4F	3.69	30.20	This work
PM6:DTTC-4Cl	3.51	43.33	This work

S12. References

- 1. M. Zhang, X. Guo, W. Ma, H. Ade and J. Hou, *Adv Mater*, 2015, **27**, 4655-4660.
- 2. Y.-T. Hsiao, C.-H. Li, S.-L. Chang, S. Heo, K. Tajima, Y.-J. Cheng and C.-S. Hsu, ACS Appl Mater Interfaces, 2017, **9**, 48, 42035-42042.
- 3. T.-W. Chen, C.-C. Chang, Y.-T. Hsiao, C. Chan, L. Hong, W.-T. Chuang, J. Hou, Y. Li and C.-S. Hsu, *ACS Appl Mater Interfaces*, 2019, **11**, 34, 31069-31077.
- 4. Y.-J. Cheng, C.-H. Hsieh, Y. He, C.-S. Hsu and Y. Li, *J Am Chem Soc*, 2010, **132**, 17381-17383.